已知F(x)=2x2-3x-2,G(x)=3x2-7x+5,則(  )
分析:根據(jù)題意求出G(x)-F(x),再進行配方、判斷出符號,即得到G(x)與F(x)的大小關(guān)系.
解答:解:由題意得,G(x)-F(x)=(3x2-7x+5)-(2x2-3x-2)
=x2-4x+9=(x-2)2+5≥5>0
∴G(x)-F(x)>0,即G(x)>F(x),
故選B.
點評:本題考查了做差法比較大小,以及配方法化簡二次式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5).
(1)求f(x)的解析式;
(2)對于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x2+1,則函數(shù)f(cosx)的單調(diào)減區(qū)間為
[kπ,
π
2
+kπ
],k∈Z
[kπ,
π
2
+kπ
],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x2+3xf′(2),則f′(0)=
-12
-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x2-kx-8在[2,3]上具有單調(diào)性,則k的取值范圍是
k≤8或k≥12
k≤8或k≥12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-2x2+x+1
(1)若f(x)<0,求x的取值范圍;
(2)數(shù)列{an}的前n項和為Sn,且Sn=f(n),求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案