9.直線y=-$\sqrt{3}$x+2$\sqrt{3}$的傾斜角是( 。
A.30°B.60°C.120°D.150°

分析 由直線的方程求得直線的斜率,再根據(jù)傾斜角和斜率的關(guān)系求得它的傾斜角即可.

解答 解:由于直線y=-$\sqrt{3}$x+2$\sqrt{3}$,
設(shè)傾斜角為θ,則tanθ=-$\sqrt{3}$,θ=120°,
故選:C.

點(diǎn)評(píng) 本題主要考查直線的傾斜角和斜率,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.“α=$\frac{π}{6}$”是“tan2α=$\sqrt{3}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)=$\frac{bx}{lnx}$-ax.
(1)若a=0,求f(x)的單調(diào)增區(qū)間;
(2)當(dāng)b=1時(shí),若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求實(shí)數(shù)a的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知A={m|-1<m<0},B={m|mx2+2mx-1<0對(duì)任意實(shí)數(shù)x恒成立},則有( 。
A.A⊆BB.B⊆AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)-f(x)=2x+5;函數(shù)g(x)=ax(a>0且a≠1).
(1)求f(x)的解析式;
(2)若g(2)=9,且g[f(x)]≥k對(duì)x∈[-1,1]恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若f(x-1)=x2+1,則f(x)=x2+2x+2(x∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若向量$\vec a$,$\vec b$的夾角為$\frac{π}{3}$,且$|{\vec a}|=2$,$|{\vec b}|=1$,則向量$\vec a$與向量$\vec a-2\vec b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若a=log${\;}_{\frac{1}{3}}$2,b=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,c=($\frac{1}{2}$)0.3,則,a,b,c的大小關(guān)系為a<c<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.對(duì)于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0成立,則稱x0為f(x)的“滯點(diǎn)”.己知函數(shù)f(x)=$\frac{2{x}^{2}-a}{x-2a}$,若f(x)在x∈[-1,1]內(nèi)存在“滯點(diǎn)”,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案