圓C1:x2+y2-4x+6y=0與圓C2:x2+y2-6x=0的交點(diǎn)為A,B,則AB的垂直平分線的方程為


  1. A.
    x+y+3=0
  2. B.
    2x-y-5=0
  3. C.
    3x-y-9=0
  4. D.
    4x-3y+7=0
C
分析:通過平面幾何的知識(shí)可知AB的垂直平分線即是兩圓的連心線,進(jìn)而通過兩圓的方程分別求得圓心坐標(biāo),利用兩點(diǎn)式求得直線的方程.
解答:整理兩圓的方程可得(x-2)2+(y+3)2=13,y2+(x-3)2=9
∴兩圓的圓心分別為(2,-3),(3,0)
由平面幾何知識(shí)知AB的垂直平分線就是連心線
∴連心線的斜率為
∴直線方程為y=3(x-3),整理得3x-y-9=0
故選C
點(diǎn)評(píng):本題主要考查了圓與圓的位置關(guān)系及其判定.考查了考生分析問題和解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓C1:x2+y2=1與圓C2:x2+y2-2x-2y+1=0的公共弦所在直線被圓C3(x-1)2+(y-1)2=
254
所截得的弦長(zhǎng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩圓C1:x2+y2-2y=0,C2:x2+(y+1)2=4的圓心分別為C1,C2,P為一個(gè)動(dòng)點(diǎn),且直線PC1,PC2的斜率之積為-
12

(1)求動(dòng)點(diǎn)P的軌跡M的方程;
(2)是否存在過點(diǎn)A(2,0)的直線l與軌跡M交于不同的兩點(diǎn)C、D,使得|C1C|=|C1D|?若存在,求直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C1x2+y2-2x+10y-24=0C2x2+y2+2x+2y-8=0公共弦的長(zhǎng)為
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:x2+y2=5和圓C2:x2+y2=1,O是原點(diǎn),點(diǎn)B在圓C1上,OB交圓C2于C.點(diǎn)D在 x軸上,
.
BD
.
OD
=0
,AJ在BD上,
.
BD
.
CA
=0

(1)求點(diǎn)A的軌跡H的方程
(2)過軌跡H的右焦點(diǎn)作直線交H于E、F,是否在y軸上存在點(diǎn)Q使得△QEF是正三角形;若存在,求出點(diǎn)q的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C1x2+y2-2x-3=0與圓C2x2+y2+4x+2y+3=0的位置關(guān)系為(  )
A、兩圓相交B、兩圓相外切C、兩圓相內(nèi)切D、兩圓相離

查看答案和解析>>

同步練習(xí)冊(cè)答案