集合A是由適合以下性質(zhì)的函數(shù)組成:對于任意x≥0,f(x)∈[-2,4],且f(x)在(0,+∞) 上是增函數(shù).
(1)試判斷f1(x)=
x
-2
f2(x)=4-6•(
1
2
)x
是否在集合A中,并說明理由;
(2)若定義:對定義域中的任意一個x都有不等式f(x)+f(x+2)<2f(x+1)恒成立,則稱這個函數(shù)為凸函數(shù).對于(1)中你認為在集合A中的函數(shù)f(x)是凸函數(shù)嗎?試證明你的結(jié)論.
分析:(1)依據(jù)集合A的定義逐一判斷即可.
(2)驗證(1)中屬于集合A的函數(shù)是否滿足凸函數(shù)的定義即可.
解答:解:(1)當(dāng)x=49時,f1(49)=
49
-2=5∉[-2,4]
,所以f1(x)∉A;
當(dāng)x≥0時,(
1
2
)x∈(0,1]
,4-6(
1
2
)x
∈[-2,4),所以f2(x)∈[-2,4],
又當(dāng)x>0時,(
1
2
)x
單調(diào)遞減,∴f2(x)=4-6(
1
2
)x
單調(diào)遞增,
故f2(x)∈A.
(2)因為f2(x)+f2(x+2)-2f2(x+1)=[4-6(
1
2
)x
]+[4-6(
1
2
)x+2
]-2[4-6(
1
2
)x+1
]
=12(
1
2
)x+1
-6(
1
2
)x
-6(
1
2
)x+2
=-
3
2
(
1
2
)x<0
,所以,f2(x)+f2(x+2)<2f2(x+1).
即f2(x)對任意x都有不等式f2(x)+f2(x+2)<2f2(x+1)成立.
故f2(x)是凸函數(shù).
點評:本題考查了函數(shù)恒成立問題,利用所學(xué)知識解決新問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

集合A是由適合以下性質(zhì)的函數(shù)f(x)構(gòu)成的,對于任意的x>0  y>0且x≠y都有f(x)+2f(y)>3f(
x+2y
3
)

(1)試判斷f1(x)=log2x及f2(x)=(x+1)2是否在集合A中?并說明理由
(2)設(shè)f(x)∈A,且定義域是(0,+∞),值域是(1,2),f(1)>
3
2
,寫出一個滿足上述條件的解析式;并證明此函數(shù)f(x)∈A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A是由適合以下性質(zhì)的函數(shù)f(x)組成的,對于任意的x≥0,f(x)∈[-2,4)且f(x)在(0,+∞)上是增函數(shù).
(1)試判斷f1(x)=
x
-2
及f2(x)=4-6?(
1
2
x(x≥0)是否在集合A中,若不在集合A中,試說明理由;
(2)對于(1)中你認為是集合A中的函數(shù)f(x),不等式f(x)+f(x+2)<2f(x+1)是否對于任意x≥0總成立?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A是由適合以下性質(zhì)的函數(shù)f(x)構(gòu)成的:對于定義域內(nèi)任意兩個不相等的實數(shù)x1,x2,都有
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)

(1)試判斷f(x)=x2及g(x)=log2x是否在集合A中,并說明理由;
(2)設(shè)f(x)∈A且定義域為(0,+∞),值域為(0,1),f(1)>
1
2
,試求出一個滿足以上條件的函數(shù)f (x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A是由適合以下性質(zhì)的函數(shù)f(x)構(gòu)成的:對于任意的,且u、υ∈(-1,1),都有|f(u)-f(υ)|≤3|u-υ|.
(1)判斷函數(shù)f1(x)=
1+x2
是否在集合A中?并說明理由;
(2)設(shè)函數(shù)f(x)=ax2+bx,且f(x)∈A,試求2a+b的取值范圍;
(3)在(2)的條件下,若f(2)=6,且對于滿足(2)的每個實數(shù)a,存在最小的實數(shù)m,使得當(dāng)x∈[m,2]時,|f(x)|≤6恒成立,試求用a表示m的表達式.

查看答案和解析>>

同步練習(xí)冊答案