在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x-y,x+y),則與B中的元素(-1,1)對應(yīng)的A中的元素為
(0,1)
(0,1)
分析:根據(jù)已知中映射f:A→B的對應(yīng)法則,f:(x,y)→(x-y,x+y),將B中的元素(-1,1)代入對應(yīng)法則,即可得到答案.
解答:解:由映射的對應(yīng)法則f:(x,y)→(x-y,x+y),
故B中的元素(-1,1)對應(yīng)的A中的元素(x,y)滿足
x-y=1,x+y=1
解得x=0,y=2
故答案為:(0,1)
點評:本題考查的知識點是映射的概念,屬基礎(chǔ)題型,熟練掌握映射的定義,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x-y,x+y),則與A中的元素(-1,2)對應(yīng)的B中的元素為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在映射f:A→B中,且f:(x,y)→(x-y,x+y),則與A中的元素(-1,2)對應(yīng)的B中的元素為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(2x-y,x+y),則與B中元素(-4,1)相對應(yīng)的A中元素為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在映射f:A→B中,A=B={(x,y)丨x,y∈R},且f:(x,y)→(x-y,x+y),則A中的元素(-1,3)對應(yīng)在B中的元素為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在映射f:A→B中,B中任一個元素都有原象對應(yīng);A={(x,y)|x-2y=1},B={(x,y)|y=f(x)}且f:(x,y)→(x-y,xy).求函數(shù)y=f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案