sin
π
6
的值為( 。
A、
1
2
B、
3
2
C、-
3
2
D、-
1
2
考點:三角函數(shù)的化簡求值
專題:計算題,三角函數(shù)的求值
分析:由特殊角的正弦函數(shù)值即可解得.
解答: 解:由特殊角的正弦函數(shù)值可得:sin
π
6
=
1
2

故選:A.
點評:本題主要考查了三角函數(shù)求值,特殊角的三角函數(shù)值一定要加強記憶,屬于基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知p:|x-3|≤2,q:(x-m)(x-m-1)≥0,若¬p是q充分而不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)計算:lg22+lg2lg5+lg5;
(2)化簡:
-sin(π+α)+sin(-α)-tan(2π+α)
tan(α+π)+cos(-α)+cos(π-α)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={x∈N|0≤x≤8},U=A∪B,A∩(∁UB)={1,3,5,7},則集合B=(  )
A、{0,2,4}
B、{0,2,4,6}
C、{0,2,4,6,8}
D、{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
cos(α-
π
2
)
sin(
2
+α)
•sin(α-2π)•cos(2π-α)+cos2(-α)-
tan(2π+α)
sin(-α)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個底面為正六邊形,側棱長都相等的六棱錐的正視圖與俯視圖如圖所示,若該幾何體的底面邊長為2,側棱長為
7
,則該幾何體的側視圖可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
1
3
,且α為第二象限的角,求cosα,tanα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足(z-1)i=2+z,則z在復平面所對應點在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若變量x,y滿足約束條件
y≤x
x+y≤1
y≥-1
且z=2x+y的最大值和最小值分別為m和n,則m-n等于(  )
A、8B、7C、6D、5

查看答案和解析>>

同步練習冊答案