對(duì)于定義在實(shí)數(shù)集上的兩個(gè)函數(shù),若存在一次函數(shù)使得,對(duì)任意的,都有,則把函數(shù)的圖像叫函數(shù)的“分界線”,F(xiàn)已知,為自然對(duì)數(shù)的底數(shù)),
(1)求的遞增區(qū)間;
(2)當(dāng)時(shí),函數(shù)是否存在過點(diǎn)的“分界線”?若存在,求出函數(shù)的解析式,若不存在,請(qǐng)說明理由。

(1)若遞增區(qū)間為,若遞增區(qū)間為,若,則遞增區(qū)間為遞增區(qū)間為(2)存在函數(shù)的圖像是函數(shù)過點(diǎn)的“分界線”。

解析試題分析:(1),

①若,則,此時(shí)的遞增區(qū)間為;
②若,則,此時(shí)的遞增區(qū)間為;
③若,則的遞增區(qū)間為
④若,則,此時(shí)的遞增區(qū)間為
(2)當(dāng)時(shí),,假設(shè)存在實(shí)數(shù),使不等式對(duì)恒成立,
得到對(duì)恒成立,
,得,
下面證明對(duì)恒成立。
設(shè),,,
時(shí),,,
時(shí),,
所以,即對(duì)恒成立。
綜上,存在函數(shù)的圖像是函數(shù)過點(diǎn)的“分界線”。
考點(diǎn):函數(shù)單調(diào)區(qū)間及不等式恒成立
點(diǎn)評(píng):第一小題求單調(diào)區(qū)間針對(duì)于不同的值對(duì)應(yīng)不同的極值點(diǎn),因此需對(duì)值分情況討論以求單調(diào)性;第二問在正確理解給定信息的基礎(chǔ)上將問題轉(zhuǎn)化為不等式恒成立問題,進(jìn)而轉(zhuǎn)化為函數(shù)最值,可利用導(dǎo)數(shù)這一工具求解

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1) 求函數(shù)上的最小值;
(2) 對(duì)一切,恒成立,求實(shí)數(shù)a的取值范圍;
(3) 證明:對(duì)一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當(dāng)x∈(0,+∞)時(shí),f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知正比例函數(shù)y=2x的圖像l1與反比例函數(shù)y=的圖像相交于點(diǎn)A(a,2),將直線l1向上平移3個(gè)單位得到的直線l2與雙曲線相交于B、C兩點(diǎn)(點(diǎn)B在第一象限),與y軸交于點(diǎn)D

(1)求反比例函數(shù)的解析式;
(2)求△DOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中。
(1)當(dāng)a=1時(shí),求它的單調(diào)區(qū)間;
(2)當(dāng)時(shí),討論它的單調(diào)性;
(3)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)有最 大值,求實(shí)數(shù)的值
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是函數(shù)的一個(gè)極值點(diǎn)。
(1)求的關(guān)系式(用表示),并求的單調(diào)區(qū)間;
(2)設(shè),若存在,使得成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)若函數(shù)是(-,+)上的減函數(shù),求實(shí)數(shù)的高考資源網(wǎng)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且對(duì)任意的實(shí)數(shù)都有成立.
(1)求實(shí)數(shù)的值;
(2)利用函數(shù)單調(diào)性的定義證明函數(shù)在區(qū)間上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案