某種項目的射擊比賽,開始時射手在距離目標100m處射擊,若命中則記3分,且停止射擊.若第一次射擊未命中,可以進行第二次射擊,但需在距離目標150m處,這時命中目標記2分,且停止射擊.若第二次仍未命中,還可以進行第三次射擊,此時需在距離目標200m處,若第三次命中則記1分,并停止射擊.若三次都未命中則記0分,并停止射擊.已知射手甲在100m處擊中目標的概率為
12
,他的命中率與目標的距離的平方成反比,且各次射擊都相互獨立.
(Ⅰ)求射手甲在三次射擊中命中目標的概率;
(Ⅱ)求射手甲在比賽中的得分不少于1分的概率.
分析:(I)記出事件記射手甲第一、二、三次射擊命中目標分別為事件A、B、C,三次均為擊中目標為事件D,分別做出幾種事件的概率,根據(jù)相互獨立事件的概率和互斥事件的概率得到結(jié)果.
(II)記出事件記射手甲第一、二、三次射擊命中目標分別為事件A、B、C,三次均為擊中目標為事件D,分別做出幾種事件的概率,做出射手甲在比賽中的得分不少于1分的概率.得到結(jié)果.
解答:解:記射手甲第一、二、三次射擊命中目標分別為事件A、B、C,三次均為擊中目標為事件D,則P(A)=
1
2

設射手甲在xm處擊中目標的概率為P(x),則P(x)=
k
x2

由x=100m時P(A)=
1
2
,得
k
1002
=
1
2
,∴k=5000,P(x)=
5000
x2

P(B)=
2
9
,P(C)=
1
8
,P(D)=P(
.
A
)P(
.
B
)P(
.
C
)=
1
2
×
7
9
×
7
8
=
49
144
.…(4分)
(I)由于各次射擊是相互獨立的,所以射手甲在三次射擊中擊中目標的概率為P=P(A)+P(
.
A
•B)+P(
.
A
.
B
•C)=
95
144
.…(8分)
(II)射手甲在比賽中的得分不少于(1分)的概率為P=1-
49
144
=
95
144
.…(12分)
點評:本題考查相互獨立事件同時發(fā)生的概率和互斥事件的概率,本題解題的關(guān)鍵是在解題前所做的先求出所要用到概率,本題是一個中檔題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某種項目的射擊比賽,開始時在距目標100米處射擊,如果命中記3分,且停止射擊,若第一次射擊未命中,可以進行第二次射擊,但目標已經(jīng)在150米處,這時命中記2分,且停止射擊;若第二次仍未命中,還可以進行第三次射擊,此時目標已在200米處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分,已知射手甲在100m處擊中目標的概率為
12
,他的命中率與目標的距離的平方成反比,且各次射擊都是獨立的.
(1)求這名射手在三次射擊中命中目標的概率;
(2)求這名射手比賽中得分的均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種項目的射擊比賽,開始時選手在距離目標100m處射擊,若命中則記3分,且停止射擊.若第一次射擊未命中,可以進行第二次射擊,但需在距離目標150m處,這時命中目標記2分,且停止射擊.若第二次仍未命中,還可以進行第三次射擊,此時需在距離目標200m處,若第三次命中則記1分,并停止射擊.若三次都未命中則記0分,并停止射擊.已知選手甲的命中率與目標的距離的平方成反比,他在100m處擊中目標的概率為
12
,且各次射擊都相互獨立.
(Ⅰ)求選手甲在三次射擊中命中目標的概率;
(Ⅱ)設選手甲在比賽中的得分為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種項目的射擊比賽,開始時在距目標100m處射擊,如果命中記3分,且停止射擊;若第一次射擊未命中,可以進行第二次射擊,但目標已在150m處,這時命中記2分,且停止射擊;若第二次仍未命中,還可以進行第三次射擊,此時目標已在200m處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分,且比賽結(jié)束.已知射手甲在100m處擊中目標的概率為
12
,他的命中率與目標的距離的平方成反比,且各次射擊都是獨立的.
(1)求射手甲在這次射擊比賽中命中目標的概率;
(2)求射手甲在這次射擊比賽中得分的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種項目的射擊比賽,開始時在距目標100m處射擊,如果命中記3分,且停止射擊;若第一次射擊未擊中,可以進行第二次射擊,但目標已在150m處,這時命中記2分,且停止射擊;若第二次仍未命中,還可以進行第三射擊,此時目標已在200m處,若第三次命中記1分,并停止射擊;若三次都未命中,則記0分.已知射手甲在100m處擊中目標的概率為0.5,他的命中率與距離的平方成反比,且各次射擊都是獨立的,設這位射手在這次射擊比賽中的得分數(shù)為ξ.
(I)求ξ的分布列;
(II)求ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種項目的射擊比賽,開始時在距目標100米處射擊,如果命中記3分,且停止射擊; 若第一次射擊未命中,可以進行第二次射擊,但目標已經(jīng)在150米處,這時命中記2分,且停止射擊; 若第二次仍未命中,還可以進行第三次射擊,此時目標已在200米處,若第三次命中則記1分,并停止射擊; 若三次都未命中,則記0分.已知射手甲在100米處擊中目標的概率為
12
,他的命中率與目標的距離的平方成反比,且各次射擊都是獨立的.
(Ⅰ)求這名射手分別在第二次、第三次射擊中命中目標的概率及三次射擊中命中目標的概率;
(Ⅱ)設這名射手在比賽中得分數(shù)為ξ,求隨機變量ξ的概率分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案