已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與拋物線y2=8x有一個公共的焦點F,且兩曲線的一個交點為P,若|PF|=5,則雙曲線的漸近線方程為( 。
分析:由拋物線y2=8x得出其焦點坐標(biāo),由|PF|=5結(jié)合拋物線的定義得出點P的坐標(biāo),代入雙曲線的方程
x2
a2
-
y2
b2
=1(a>0,b>0)
,從而得到關(guān)于a,b 的方程,求出a,b的值,進(jìn)而求出雙曲線的漸近線方程.
解答:解:由于雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與拋物線y2=8x有一個公共的焦點F,
且拋物線y2=8x得出其焦點坐標(biāo)(2,0)
故雙曲線的半焦距c=2,
又|PF|=5,設(shè)P(m,n),
由拋物線的定義知|PF|=m+2
∴m+2=5,m=3,
∴點P的坐標(biāo)(3,±
24

a 2+b 2=4
9
a2
-
24
b2
=1
,解得:
a2=1
b2=3
,
則雙曲線的漸近線方程為y=±
3
x
,
故選:A.
點評:本題考查雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線、拋物線的簡單性質(zhì)的應(yīng)用,求出a,b的值是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點F1,交雙曲線的左支于A、B兩點,且|AB|=4,F(xiàn)2為雙曲線的右焦點,△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個焦點與拋物線y2=4x的焦點重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點,離心率e=2,點M(
5
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點,且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點與拋物線y2=4
3
x
的焦點重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習(xí)冊答案