在算式“4×□+1×△=30”的兩個(gè)□,△中,分別填入兩個(gè)正整數(shù),使它們的倒數(shù)之和最小,則這兩個(gè)數(shù)構(gòu)成的數(shù)對(duì)(□,△)應(yīng)為


  1. A.
    (4,14)
  2. B.
    (5,10)
  3. C.
    (6,6)
  4. D.
    (3,18)
B
分析:先設(shè)出△,□,然后利用代入消元法表示出其倒數(shù)和,由于該倒數(shù)和的形式中分母次數(shù)高于分子,則求其倒數(shù)的最大值,這與原倒數(shù)和的最小值是一致的;最終把代數(shù)式轉(zhuǎn)化為x++a(x>0)的形式,利用基本不等式求最值,則由取最值的條件即可解決問(wèn)題.
解答:設(shè)1×m+4n=30,m、n∈N+,則m=30-4n,其中1≤n≤7.
所以y===
=====+
==-+=-[(10-n)+]+≤-×2×+=
當(dāng)10-n=時(shí)取等號(hào),即 取得最大值,y取得最小值.
解得n=5,則m=10.
則這兩個(gè)數(shù)構(gòu)成的數(shù)對(duì)(□,△)應(yīng)為(5,10)
故選B.
點(diǎn)評(píng):本題主要考查了代數(shù)式向形如x++a(x>0,a為常數(shù))的代數(shù)式的轉(zhuǎn)化方法,注意分子次數(shù)必須高于分母次數(shù);同時(shí)考查基本不等式的運(yùn)用條件,特別是取等號(hào)時(shí)的條件.該題代數(shù)運(yùn)較為繁瑣,運(yùn)算量較大,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在算式“4×□+1×△=30”的兩個(gè)□,△中,分別填入兩個(gè)正整數(shù),使它們的倒數(shù)之和最小,則這兩個(gè)數(shù)構(gòu)成的數(shù)對(duì)(□,△)應(yīng)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東城區(qū)模擬)在算式“4×□+1×△=30”的□,△中,分別填入一個(gè)正整數(shù),使它們的倒數(shù)之和最小,則這兩個(gè)數(shù)構(gòu)成的數(shù)對(duì)(□,△)應(yīng)為
(5,10)
(5,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在算式“
4
+
1
Θ
=
30
△×Θ
”中,△、Θ都為正整數(shù),且它們的倒數(shù)之和最小,則△、Θ的值分別為( 。
A、6,6B、10,5
C、14,4D、18,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在算式“4×□+1×□=6”的兩個(gè)□中,分別填入兩個(gè)自然數(shù),使它們的倒數(shù)之和最小,則這兩個(gè)數(shù)應(yīng)分別為_(kāi)____________和_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山西省介休市高三下學(xué)期模擬考試?yán)砜茢?shù)學(xué) 題型:填空題

在算式“4×□+1×□=6”的兩個(gè)□中,分別填入兩個(gè)自然數(shù),使它們的倒數(shù)之和最小,則這兩個(gè)數(shù)應(yīng)分別為_(kāi)____________和_____________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案