已知橢圓經(jīng)過點.
(1)求橢圓的方程及其離心率;
(2)過橢圓右焦點的直線(不經(jīng)過點)與橢圓交于兩點,當的平分線為 時,求直線的斜率.
(1),;(2).
【解析】
試題分析:本題主要考查橢圓的標準方程以及幾何性質(zhì)、直線與橢圓相交問題等基礎知識,考查學生的數(shù)形結合思想、轉化能力、計算能力.第一問,橢圓過點P,說明點P在橢圓上,符合解析式,即可求出,從而得到橢圓的標準方程,通過橢圓的標準方程得到,,,從而得到離心率;第二問,由第一問得到橢圓右焦點F的坐標,由P、F點坐標可知軸,由題意得,令直線AB的方程與橢圓方程聯(lián)立,得到A、B坐標,結合P點坐標,得出和代入到中,解出直線AB的斜率k的值.
(1)把點代入,可得.
故橢圓的方程為,橢圓的離心率為. ……4分
(2)由(1)知:.
當的平分線為時,由和知:軸.
記的斜率分別為.所以,的斜率滿足……6分
設直線方程為,代入橢圓方程并整理可得,
.
設,則
又,則,
.……………………8分
所以=
…………11分
即. . ……………13分
考點:橢圓的標準方程以及幾何性質(zhì)、直線與橢圓相交問題.
科目:高中數(shù)學 來源:2013-2014學年陜西省等五校高三第三次模擬文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)在上是減函數(shù),在上是增函數(shù),函數(shù)在上有三個零點,且是其中一個零點.
(1)求的值;
(2)求的取值范圍;
(3)設,且的解集為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年陜西省高考第七次適應性訓練理科數(shù)學試卷(解析版) 題型:選擇題
一個幾何體的三視圖如圖所示,則該幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年陜西省高考第七次適應性訓練文科數(shù)學試卷(解析版) 題型:選擇題
函數(shù)在處有極值,則的值為( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年陜西省高三下學期第八次適應性訓練理科數(shù)學試卷(解析版) 題型:填空題
已知極坐標的極點在直角坐標系的原點O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為(為參數(shù)),直線的極坐標方程為.點P在曲線C上,則點P到直線的距離的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年陜西省高三下學期第八次適應性訓練理科數(shù)學試卷(解析版) 題型:選擇題
已知是R上的偶函數(shù),若將的圖象向右平移一個單位,則得到一個奇函數(shù)的圖像,若則=( )
(A)0 (B)1 (C)-1 (D)-1004.5
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年陜西省高三第六次模擬理科數(shù)學試卷(解析版) 題型:填空題
在中,不等式成立;在凸四邊形ABCD中,
不等式成立;在凸五邊形ABCDE中,不等式成立,,依此類推,在凸n邊形中,不等式__ ___成立.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年重慶市高三下學期考前模擬(二診)理科數(shù)學試卷(解析版) 題型:填空題
函數(shù),若不等式的解集為,則實數(shù)的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com