解答:解:(1)
h(x)=f(x)-g(x)=ln(x+1)-,x>-1,
h/(x)=-=,
令h
/(x)<0,得:-1<x<0,則h(x)在(-1,0)上單調(diào)遞減;
令h
/(x)>0,得:x>0,則h(x)在(0,+∞)上單調(diào)遞增.
故增區(qū)間為(0,+∞),減區(qū)間為(-1,0).
(2)由(1)知h(x)
min=h(0)=0,
則當(dāng)x>-1時(shí)f(x)≥g(x)恒成立.
f/(x)=>0,
g/(x)=>0,
則f(x)、g(x)在(-1,+∞)上均單調(diào)遞增.
易知:0>f(x
1)>g(x
1),f(x
2)>g(x
2)>0,
則-f(x
2)g(x
1)>-f(x
1)g(x
2),
即:f(x
1)g(x
2)-f(x
2)g(x
1)>0.
(3)
f2(x)-xg(x)=ln2(x+1)-,
令
F(x)=ln2(x+1)-,
則
F/(x)=-=2(x+1)ln(x+1)-(x2+2x) |
(x+1)2 |
,
令G(x)=2(x+1)ln(x+1)-(x
2+2x),
則G
/(x)=2ln(x+1)-2x,
令H(x)=2ln(x+1)-2x,
則
H/(x)=-2=.
當(dāng)-1<x<0時(shí),H
/(x)>0,則H(x)在(-1,0)上單調(diào)遞增;
當(dāng)x>0時(shí),H
/(x)<0,則H(x)在(0,+∞)上單調(diào)遞減,
故H(x)≤H(0)=0,即G
/(x)≤0,
則G(x)在(-1,+∞)上單調(diào)遞減.
當(dāng)-1<x<0時(shí),G(x)>G(0)=0,
即F
/(x)>0,則F(x)在(-1,0)上單調(diào)遞增;
當(dāng)x>0時(shí),G(x)<G(0)=0,
即F
/(x)<0,則F(x)在(0,+∞)上單調(diào)遞減,
故F(x)≤F(0)=0,
即f
2(x)-xg(x)≤0.