6.下列函數(shù)中,周期為2π的是( 。
A.y=sin$\frac{x}{2}$B.y=|sin$\frac{x}{2}$|C.y=cos2xD.y=|sin2x|

分析 根據(jù)函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,函數(shù)y=|Asin(ωx+φ)|的周期為$\frac{1}{2}$•$\frac{2π}{ω}$,得出結(jié)論.

解答 解:由于函數(shù)y=sin$\frac{x}{2}$的最小正周期為$\frac{2π}{\frac{1}{2}}$=4π,故排除A;
根據(jù)函數(shù)y=|sin$\frac{x}{2}$|的最小正周期為$\frac{1}{2}•\frac{2π}{\frac{1}{2}}$=2π,故B中的函數(shù)滿足條件;
由于y=cos2x的最小正周期為$\frac{2π}{2}$=π,故排除C;
由于y=|sin2x|的最小正周期為$\frac{1}{2}$•$\frac{2π}{2}$=$\frac{π}{2}$,故排除D,
故選:B.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的周期性,利用了函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,函數(shù)y=|Asin(ωx+φ)|的周期為$\frac{1}{2}$•$\frac{2π}{ω}$,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點P($\frac{\sqrt{3}}{2}$,$\sqrt{3}$),且離心率e=$\frac{1}{2}$.
(1)求橢圓C的方程.
(2)若F1、F2為橢圓的兩個焦點,A、B為橢圓的兩點,且$\overrightarrow{A{F}_{1}}$=$\frac{1}{2}$$\overrightarrow{B{F}_{2}}$,求直線AF1的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知正方體ABCD-A′B′C′D′中:BC′與CD′所成的角為600

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=2cos(x+\frac{π}{3})[sin(x+\frac{π}{3})-\sqrt{3}cos(x+\frac{π}{3})]$.
(1)求f(x)的值域和最小正周期;
(2)方程f(x)=m在$x∈[0,\frac{π}{6}]$內(nèi)有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列函數(shù)的導(dǎo)數(shù).
(1)$y=\frac{e^x}{x}$; 
 (2)y=(2x2-1)(3x+1);    
(3)$y=sin({x+1})-cos\frac{x}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在正方體ABCD-A1B1C1D1中,O為正方形ABCD的中心,則D1O與平面ABCD所成的角的余弦值為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=xlnx.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若對所有x≥1都有f(x)≥ax-1,求實數(shù)a的取值范圍.
(Ⅲ)若關(guān)于x的方程f(x)=b恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow$=(x,-6),若向量$\overrightarrow{a}$與$\overrightarrow$共線,則實數(shù)x的值為( 。
A.-3B.-12C.3D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.p>0是拋物線y2=2px的焦點落在x軸上的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案