若x,y滿足約束條件
5x+3y≤15
y≤x+1
x-5y≤3
,則3x+5y的取值范圍是( 。
A、[-13,15]
B、[-13,17]
C、[-11,15]
D、[-11,17]
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:
分析:由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答: 解:由約束條件
5x+3y≤15
y≤x+1
x-5y≤3
作出可行域如圖,
令z=3x+5y,化為y=-
3
5
x+
z
5
,
聯(lián)立
x-5y=3
y=x+1
,解得
x=-2
y=-1
,A(-2,-1);
聯(lián)立
y=x+1
2x+3y=15
,解得
x=
3
2
y=
5
2
,C(
3
2
5
2
).
由圖可知,目標(biāo)函數(shù)在(-2,-1)處取得最小值,最小值為3×(-2)+5×(-1)=-11;
(
3
2
,
5
2
)
處取得最大值,最大值為
3
2
+5×
5
2
=17

即3x+5y∈[-11,17].
故選:D.
點(diǎn)評(píng):本題主要考查線性規(guī)劃,是書(shū)中的原題改編,要求學(xué)生有一定的運(yùn)算能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,已知a=
3
,b=3,∠C=30°,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在[t-4,3t]上的奇函數(shù)f(x)=ax-a-x(其中0<a<1),若m滿足f(m2-4m)≥0,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)算法流程圖,則輸出S的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出結(jié)果S的值為(  )
A、
1
2
B、0
C、-
3
2
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論:①?a,b∈(0,+∞)當(dāng)a+b=1時(shí)
1
a
+
1
b
=3;②f(x)=lg(x2+ax+1),定義域?yàn)镽,則-2<a<2;③x+y≠3是x≠1或y≠2成立的充分不必要條件;④f(x)=
1-x
+
x+3
最大值與最小值的比為
2

其中正確結(jié)論的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①已知a,b,m都是正數(shù),且
a+m
b+m
a
b
,則a<b;
②若函數(shù)f(x)=lg(ax+1)的定義域是{x|x<1},則a<-1;
③已知x∈(0,π),則y=sinx+
2
sinx
的最小值為2
2
;
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x≥0,y≥0,且x+2y=1,那么2x+3y2的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β∈(0,π),f(a)=
3-2cos2α
4sinα

(1)用sinα表示f(α);
(2)若f(α)=f(β),求α及β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案