【題目】對于函數(shù)f(x)=(2x-x2)ex

(-)是f(x)的單調(diào)遞減區(qū)間;

f(-)是f(x)的極小值,f()是f(x)的極大值;

f(x)沒有最大值,也沒有最小值;

f(x)有最大值,沒有最小值.

其中判斷正確的是_________.

【答案】②③

【解析】分析:對函數(shù)進(jìn)行求導(dǎo),然后令求出,再根據(jù)的正負(fù)判斷得到函數(shù)的單調(diào)性,進(jìn)而確定①不正確;②正確,根據(jù)函數(shù)的單調(diào)性可判斷極大值,既是原函數(shù)的最大值,無最小值,(3)正確,(4)不正確,從而得到答案.

詳解:由函數(shù),則,

,解得,所以函數(shù)單調(diào)遞增;

,解得,所以函數(shù)單調(diào)遞減,

所以函數(shù)在處取得極小值,在處取得極大值,

所以不正確;正確;

進(jìn)而根據(jù)函數(shù)的單調(diào)性和函數(shù)的變化趨勢,可得函數(shù)沒有最大值,也沒有最小值,

所以正確,④不正確,

所以正確命題的序號為②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求處的切線方程;

(2)若在區(qū)間上恰有兩個零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年10月19日,由中國工信部、江西省政府聯(lián)合主辦的世界VR(虛擬現(xiàn)實(shí))產(chǎn)業(yè)大會在南昌開幕,南昌在紅谷灘新區(qū)建立VR特色小鎮(zhèn)項目.現(xiàn)某廠商抓住商機(jī)在去年用450萬元購進(jìn)一批VR設(shè)備,經(jīng)調(diào)試后今年投入使用,計劃第一年維修、保養(yǎng)費(fèi)用22萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該設(shè)備使用后,每年的總收入為180萬元,設(shè)使用x年后設(shè)備的盈利額為y萬元.

(1)寫出yx之間的函數(shù)關(guān)系式;

(2)使用若干年后,當(dāng)年平均盈利額達(dá)到最大值時,求該廠商的盈利額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:

當(dāng)直線ABa60°角時,ABb30°角;

當(dāng)直線ABa60°角時,ABb60°角;

直線ABa所成角的最小值為45°;

直線ABa所成角的最大值為60°.

其中正確的是________.(填寫所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.若直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

(I)求直線的普通方程與曲線的直角坐標(biāo)方程;

(II)設(shè)直線與曲線相交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC,a=7,b=8,cosB= –

A

AC邊上的高

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】遼寧號航母紀(jì)念章從2012105日起開始上市,通過市場調(diào)查,得到該紀(jì)念章每枚的市場價(單位:元)與上市時間(單位:天)的數(shù)據(jù)如下:

上市時間

市場價

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個恰當(dāng)?shù)暮瘮?shù)描述遼寧號航母紀(jì)念章的市場價與上市時間的變化關(guān)系:①;②;③;

(2)利用你選取的函數(shù),求遼寧號航母紀(jì)念章市場價最低時的上市天數(shù)及最低的價格;

(3)設(shè)你選取的函數(shù)為,若對任意實(shí)數(shù),關(guān)于的方程恒有個想異實(shí)數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列滿足4Sn=(an+1)2
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本固定成本生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:

1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);

2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

同步練習(xí)冊答案