精英家教網 > 高中數學 > 題目詳情
直線y=一x與橢圓C: =1(a>b>0)交于A、B兩點,以線段AB為直徑的圓恰好經過橢圓的右焦點,則橢圓C的離心率為.
A.       B.         C.         D.4-2
C
得:所以根據橢圓得;所以
整理得:,所以;解得
(舍去)。所以故選C
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的焦點為,在長軸上任取一點,過作垂直于的直線交橢圓于,則使得點的橫坐標的取值范圍 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的最小值為(   )
A.   B.   C.   D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
設橢圓E:的上焦點是,過點P(3,4)和作直線P交橢圓于A、B兩點,已知A().
(1)求橢圓E的方程;
(2)設點C是橢圓E上到直線P距離最遠的點,求C點的坐標。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓內有一點P,以P為中點作弦MN,則直線MN的方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設F1,F(xiàn)2為橢圓的兩個焦點,若橢圓上存在點P滿足,則橢圓的離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓G的中心在坐標原點,長軸在x軸上,離心率為,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為       __

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分18分,第(1)題4分、第(2)題8分、第(3)題6分)
已知二次曲線的方程:
(1)分別求出方程表示橢圓和雙曲線的條件;
(2)對于點,是否存在曲線交直線、兩點,使得?若存在,求出的值;若不存在,說明理由;
(3)已知與直線有公共點,求其中實軸最長的雙曲線方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

分別為橢圓的焦點,點在橢圓上,若;則點的坐標是 _________

查看答案和解析>>

同步練習冊答案