設(shè)等差數(shù)列{}的通項公式是3n-2則=________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合W是滿足下列兩個條件的無窮數(shù)列{an}的集合:①對任意n∈N+
an+an+22
≤an+1,恒成立;②對任意n∈N+,存在與n無關(guān)的常數(shù)M,使an≤M恒成立.
(Ⅰ)若{an}是等差數(shù)列,Sn是其前n項的和,且a3=4,S3=18,試探究數(shù)列{Sn}與集合W之間的關(guān)系;
(Ⅱ)設(shè)數(shù)列{bn}的通項公式為bn=5n-2n,且{bn}∈W,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的通項公式為 an=kn-1.已知a1+a2+a3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求k的值;
(2)令bn=log2a3n+1,(n=1,2,…,),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的首項為23,公差為整數(shù),且從第7項起為負(fù)數(shù).
(1)求此數(shù)列的通項公式;
(2)若數(shù)列{an}的前n項和記為Sn,求使Sn>0的最大的n的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合W是滿足下列兩個條件的無窮數(shù)列{an}的集合:①
an+an+2
2
an+1
②an≤M,其中n∈N*,M是與n無關(guān)的常數(shù)
(1)若{an}是等差數(shù)列,Sn是其前n項的和,a3=4,S3=18,試探究{Sn}與集合W之間的關(guān)系;
(2)設(shè)數(shù)列{bn}的通項為bn=5n-2n,且{bn}∈W,M的最小值為m,求m的值;
(3)在(2)的條件下,設(shè)Cn=
1
5
[bn+(m-5)n]+
2
,求證:數(shù)列{Cn}中任意不同的三項都不能成為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下真命題:設(shè)an1an2,…,anm是公差為d的等差數(shù)列{an}中的任意m個項,若
n1+n2+…+nm
m
=p+
r
m
(0≤r<m,p、r、m∈N或r=0)①,則有
an1+an2+…+anm
m
=ap+
r
m
d
②,特別地,當(dāng)r=0時,稱apan1,an2,…,anm的等差平均項.
(1)當(dāng)m=2,r=0時,試寫出與上述命題中的(1),(2)兩式相對應(yīng)的等式;
(2)已知等差數(shù)列{an}的通項公式為an=2n,試根據(jù)上述命題求a1,a3,a10,a18的等差平均項;
(3)試將上述真命題推廣到各項為正實(shí)數(shù)的等比數(shù)列中,寫出相應(yīng)的真命題.

查看答案和解析>>

同步練習(xí)冊答案