分析 (1)設第n年獲取利潤為y萬元,n年共收入租金30n萬元.付出裝修費共n+$\frac{n(n-1)}{2}×2$=n2,付出投資81萬元,由此可知利潤y=30n-(81+n2),由y>0能求出從第幾年開始獲取純利潤.
(2)①純利潤總和最大時,以10萬元出售,利用二次函數(shù)的性質(zhì)求出最大利潤,方案②利用基本不等式進行求解,即可得出結(jié)論.
解答 解:(1)設第n年獲取利潤為y萬元
n年共收入租金30n萬元,付出裝修費構(gòu)成一個以1為首項,2為公差的等差數(shù)列,共n+$\frac{n(n-1)}{2}×2$=n2,
因此利潤y=30n-(81+n2),令y>0,
解得:3<n<27,
所以從第4年開始獲取純利潤.
(2)純利潤y=30n-(81+n2)=-(n-15)2+144,
所以15年后共獲利潤:144+10=154(萬元).
年平均利潤W=$\frac{30n-(81+{n}^{2})}{n}$=30-$\frac{81}{n}$-n≤30-2$\sqrt{81}$=12(當且僅當$\frac{81}{n}$=n,即n=9時取等號)所以9年后共獲利潤:12×9+50=158(萬元).
∵154<158,方案②時間比較短,所以選擇方案②.
點評 本題考查數(shù)列的性質(zhì)和應用,同時考查了利基本不等式求函數(shù)的最值,解題時要認真審題,仔細解答.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | ±1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | -1,3 | C. | 3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{2}{5}$]∪[4,+∞) | B. | [$\frac{2}{5}$,4] | C. | [2,4] | D. | (-∞,-2]∪[4,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com