已知橢圓C:的離心率為,且經(jīng)過(guò)點(diǎn)
(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說(shuō)明理由.
【答案】分析:(1)利用橢圓的離心率和將點(diǎn)P坐標(biāo)代入橢圓方程中,解得a2,b2,從而求出橢圓方程.
(2)第一步:根據(jù)橢圓方程先求出左焦點(diǎn),再求出以橢圓C的長(zhǎng)軸為直徑的圓的方程及圓心和半徑,
    第二步:求出以PF為直徑的圓的方程及圓心和半徑,再根據(jù)圓心距與兩半徑的關(guān)系得到兩圓相切.
解答:解:(1)∵橢圓的離心率為,且經(jīng)過(guò)點(diǎn)
解得
∴橢圓C的方程為
(2)∵a2=4,b2=3,∴
∴橢圓C的左焦點(diǎn)坐標(biāo)為(-1,0).
以橢圓C的長(zhǎng)軸為直徑的圓的方程為x2+y2=4,圓心坐標(biāo)是(0,0,半徑為2
以PF為直徑的圓的方程為,圓心坐標(biāo)為(0,),半徑為

故以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓內(nèi)切.
點(diǎn)評(píng):此題考查橢圓方程的求法,及兩圓之間位置關(guān)系的判定,尤其是兩圓位置關(guān)系的判定是解析幾何在高考中的熱點(diǎn)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:的離心率為,雙曲線x²-y²=1的漸近線與橢圓有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓c的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年廣東省廣州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:的離心率為,且經(jīng)過(guò)點(diǎn)
(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測(cè)試數(shù)學(xué)理卷 題型:選擇題

已知橢圓C:的離心率為,過(guò)右焦點(diǎn)且斜率為的直線與橢圓C相交于兩點(diǎn).若,則 =(      )

A.         B.                  C.2            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知橢圓C:,它的離心率為.直線與以原點(diǎn)為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年吉林一中高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題

.已知橢圓C:的離心率為,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線與橢圓C交于,兩點(diǎn),點(diǎn),且,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案