19.定義:如果函數(shù)f(x)在[m,n]上存在x1,x2(m<x1<x2<n)滿足f′(x1)=$\frac{f(n)-f(m)}{n-m}$,f′(x2)=$\frac{f(n)-f(m)}{n-m}$,則稱函數(shù)f(x)是[m,n]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3-x2+a是[0,a]上“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{1}{3}$,$\frac{1}{2}$)B.($\frac{1}{2}$,3)C.($\frac{1}{2}$,1)D.($\frac{1}{3}$,1)

分析 令f′(x)=3x2-2x=$\frac{f(a)-f(0)}{a-0}$=a2-a,a2-a=3x2-2x,x∈[0,a].令g(x)=3x2-2x-a2+a,根據(jù)函數(shù)f(x)=x3-x2+a是[0,a]上“雙中值函數(shù)”,可得方程3x2-2x-a2+a=0在x∈(0,a)有兩個(gè)不等實(shí)數(shù)根.必須滿足:g(0)>0,$g(\frac{1}{3})$<0,g(a)>0.解出即可得出.

解答 解:令f′(x)=3x2-2x=$\frac{f(a)-f(0)}{a-0}$=a2-a,
∴a2-a=3x2-2x,x∈[0,a].
令g(x)=3x2-2x-a2+a,
∵函數(shù)f(x)=x3-x2+a是[0,a]上“雙中值函數(shù)”,
∴方程3x2-2x-a2+a=0在x∈(0,a)有兩個(gè)不等實(shí)數(shù)根.
∴g(0)>0,$g(\frac{1}{3})$<0,g(a)>0.
解得$\frac{1}{2}<a<$1.
∴實(shí)數(shù)a的取值范圍是$(\frac{1}{2},1)$.
故選:C.

點(diǎn)評 本題考查了導(dǎo)數(shù)的運(yùn)算法則、函數(shù)的性質(zhì)、方程與不等式的解法,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題中,真命題的個(gè)數(shù)是( 。
$\begin{array}{l}(1)若a>b,則ac>bc.(2)若a>b,則a{c^2}>b{c^2}.\\(3)若a{c^2}>b{c^2},則a>b.(4)若a>b,則{e^a}>{e^b}.\end{array}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.解關(guān)于x的不等式ax2+(a-2)x-2≥0(a≥0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)y=f(x)的定義域是[0,3],則函數(shù)g(x)=$\frac{f(2x)}{|x|+x}$的定義域是( 。
A.[0,1)∪(1,2]B.$(0,1)∪(1,\frac{3}{2}]$C.$(0,\frac{3}{2}]$D.[1,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=-x2+2(a-1)x+2在(-∞,4]上是增函數(shù),則實(shí)數(shù)a的范圍是( 。
A.a≥5B.a≥3C.a≤3D.a≤-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線xsinα+y+2=0的傾斜角的取值范圍是( 。
A.$[{\frac{π}{6},\frac{π}{4}}]$B.$[{0,\frac{π}{4}}]∪[{\frac{π}{2},π}]$C.$[{\frac{π}{4},\frac{3π}{4}}]$D.$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知平面向量$\overrightarrow a=({2,-1}),\overrightarrow b=({m,2})$,且$\overrightarrow a⊥\overrightarrow b$,則$|{\overrightarrow a+2\overrightarrow b}|$=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了調(diào)查高一新生中女生的體重情況,校衛(wèi)生室隨機(jī)選20名女生作為樣本,測量她們的體重(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間[40,45],(45,50],(50,55],(55,60]進(jìn)行分組,得到頻率分布直方圖如圖所示,已知樣本中體重在區(qū)間(45,50]上的女生數(shù)與體重在區(qū)間(50,60]上的女生數(shù)之比為4:3.
(1)求a,b的值;
(2)從樣本中體重在區(qū)間(50,60]上的女生中隨機(jī)抽取兩人,求體重在區(qū)間(55,60]上的女生至少有一人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若集合$M=\{x\left|{\frac{1}{x}<1}\right.\}$,集合S={x|y=lg(x-1)},則下列各式中正確的是( 。
A.M∪S=MB.M∪S=SC.M=SD.M∩S=∅

查看答案和解析>>

同步練習(xí)冊答案