設l,m是兩條不同的直線,α是一個平面,給出下列四個命題,正確命題的題號是 .
①若l⊥m,m?α,則l⊥α
②若l⊥α,l∥m,則m⊥α
③若l∥α,m?α,則l∥m
④若l∥α,m∥α,則l∥m.
【答案】分析:根據空間空間中線面關系的判定及性質定理逐個分析四個結論,由線面垂直的判定定理,我們可得①不滿足定理,故①錯誤;③中若l∥α,m?α,則l與m可能平行也可能垂直,故③錯誤;④中若l∥α,m∥α,則l與m可能平行也可能垂直也可能異面,故④錯誤;分析后即可得到結論.
解答:解:要證明l⊥α,我們要證明l⊥α內的兩個相交直線,故l⊥m,m?α時,l⊥α不一定成立,故①錯誤;
若l⊥α,l∥m,由線面垂直的第二判定定理,我們可得m⊥α,故②正確;
若l∥α,m?α,則l與m可能平行也可能垂直,故③錯誤;
若l∥α,m∥α,則l與m可能平行也可能垂直也可能異面,故④錯誤;
故答案為:②
點評:判斷或證明線面平行的常用方法有:①利用線面平行的定義(無公共點);②利用線面平行的判定定理(a?α,b?α,a∥b⇒a∥α);③利用面面平行的性質定理(α∥β,a?α⇒a∥β);④利用面面平行的性質(α∥β,a?α,a?,a∥α⇒?a∥β).線線垂直可由線面垂直的性質推得,直線和平面垂直,這條直線就垂直于平面內所有直線,這是尋找線線垂直的重要依據.垂直問題的證明,其一般規(guī)律是“由已知想性質,由求證想判定”,也就是說,根據已知條件去思考有關的性質定理;根據要求證的結論去思考有關的判定定理,往往需要將分析與綜合的思路結合起來.