函數(shù)f(x)=x2+bx的圖象在點(diǎn)A(1,f(1))處的切線與直線3x﹣y+2=0平行,若數(shù)列{}的前n項(xiàng)和為Sn,則S2012的值為( 。
| A. |
| B. |
| C. |
| D. |
|
考點(diǎn):
利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程;數(shù)列與函數(shù)的綜合.
專題:
計(jì)算題;導(dǎo)數(shù)的概念及應(yīng)用.
分析:
對函數(shù)求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義可求切線在x=1處的斜率,然后根據(jù)直線平行時(shí)斜率相等的條件可求b,代入可求f(n),利用裂項(xiàng)求和即可求
解答:
解:∵f(x)=x2+bx
∴f′(x)=2x+b
∴y=f(x)的圖象在點(diǎn)A(1,f(1))處的切線斜率k=f′(1)=2+b
∵切線與直線3x﹣y+2=0平行
∴b+2=3
∴b=1,f(x)=x2+x
∴f(n)=n2+n=n(n+1)
∴=
∴S2012=
=1﹣
=1﹣=
故選D
點(diǎn)評:
本題以函數(shù)的導(dǎo)數(shù)的幾何意義為載體,主要考查了切線斜率的求解,兩直線平行時(shí)的斜率關(guān)系的應(yīng)用,及裂項(xiàng)求和方法的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com