在正方體中,點(diǎn)E為的中點(diǎn),則平面與平面ABCD所成的銳二面角的余弦值為(  )
A.B.C.D.
B


以A為原點(diǎn)建立空間直角坐標(biāo)系,如圖.
設(shè)棱長(zhǎng)為1,則(0,0,1),,D(0,1,0),
所以=(0,1,-1),,
設(shè)平面的一個(gè)法向量為=(1,y,z),
,所以
所以=(1,2,2).
設(shè)平面ABCD的一個(gè)法向量為=(0,0,1),
所以
即平面與平面ABCD所成的銳二面角的余弦值為,故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AB//CD,AD=DC=CB=a,,平面平面ABCD,四邊形ACFE是矩形,AE=a.
(1)求證:平面ACFE;
(2)求二面角B—EF—D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如下圖,在三棱錐中,底面,點(diǎn)為以為直徑的圓上任意一動(dòng)點(diǎn),且,點(diǎn)的中點(diǎn),且交于點(diǎn).
(1)求證:;
(2)當(dāng)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,底面是邊長(zhǎng)為2的菱形,且,以為底面分別作相同的正三棱錐,且.

(1)求證:平面;
(2)求平面與平面所成銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐的底面的菱形,,點(diǎn)邊的中點(diǎn),交于點(diǎn),

(1)求證:
(2)若的大;
(3)在(2)的條件下,求異面直線所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點(diǎn).

(1)證明:PF⊥FD;
(2)判斷并說明PA上是否存在點(diǎn)G,使得EG∥平面PFD;
(3)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,已知空間四邊形OABC中,|OB|=|OC|,且∠AOB=∠AOC,則、夾角θ的余弦值為(  )
A.0B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的點(diǎn)是( )
A.(-2,3,-1)B.(-2,-3,-1)C.(2,-3,-1)D.(-2,3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知空間三點(diǎn)A(-2,0,2),B(-1,1,2),C(-3,0,4).設(shè)a,b.
(1)求ab的夾角θ;
(2)若向量kab與ka-2b互相垂直,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案