若三棱錐的三個(gè)側(cè)面兩兩垂直,側(cè)棱長(zhǎng)為1,頂點(diǎn)都在一個(gè)球面上,則該球的表面積為( 。
A、π
B、
2
3
π
C、3π
D、2π
考點(diǎn):球的體積和表面積
專(zhuān)題:空間位置關(guān)系與距離
分析:根據(jù)題意可得三棱錐的三條側(cè)棱兩兩垂直,因此以三條側(cè)棱為長(zhǎng)、寬、高構(gòu)造正方體如圖所示,該正方體的外接球就是三棱錐的外接球,利用長(zhǎng)方體的對(duì)角線(xiàn)長(zhǎng)公式算出球的直徑,再根據(jù)球的表面積公式加以計(jì)算,可得答案.
解答: 解:設(shè)三棱錐A-BCD中,面ABC、面ABD、面ACD兩兩互相垂直,AB=AC=AD=1,
則AB、AC、AD兩兩互相垂直,以AB、AD、AC為長(zhǎng)、寬、高,構(gòu)造正方體如圖所示,
可得該正方體的外接球就是三棱錐A-BCD的外接球,
設(shè)球半徑為R,可得正方體的對(duì)角線(xiàn)長(zhǎng)等于球直徑2R,
即2R=
AB2+AC2+AD2
=
3
,解得R=
3
2
,
∴外接球的表面積是S=4πR2=4π×(
3
2
)
2
=3π.
故選:C.
點(diǎn)評(píng):本題給出特殊的三棱錐,求它的外接球的表面積.著重考查了多面體的外接球、長(zhǎng)方體的對(duì)角線(xiàn)長(zhǎng)公式和球的表面積計(jì)算等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={x|2<x<7},B={x|3≤x<10},A∩B=( 。
A、(2,10)
B、[3,7)
C、(2,3]
D、(7,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=8x的準(zhǔn)線(xiàn)與雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)相交于A、B兩點(diǎn),雙曲線(xiàn)的一條漸近線(xiàn)方程是y=
4
3
3
x,點(diǎn)F是拋物線(xiàn)的焦點(diǎn),且△FAB是等邊三角形,則該雙曲線(xiàn)的標(biāo)準(zhǔn)方程是( 。
A、
x2
36
-
y2
6
=1
B、
x2
16
-
y2
3
=1
C、
x2
6
-
y2
32
=1
D、
x2
3
-
y2
16
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}中,Sn=-4n2+25n+1.
(1)求{an}的通項(xiàng)公式;
(2)求a10+a11+a12+…+a20的值;
(3)求Sn最大時(shí)an的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=
3
,b=3,c≠a,A=30°,則角C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a2-a>0,函數(shù)y=a|x|(a>0,a≠1)的圖象形狀大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的S值為
 
;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若π<α<
2
,則
1-sinα
1+sinα
+
1+sinα
1-sinα
的化簡(jiǎn)結(jié)果( 。
A、
2
tanα
B、-
2
tanα
C、
2
sinα
D、-
2
cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(ωx+
π
4
)(ω>0)的最小正周期是π,下面是函數(shù)f(x)對(duì)稱(chēng)軸的是( 。
A、π=π
B、x=
π
2
C、x=
π
4
D、x=
π
8

查看答案和解析>>

同步練習(xí)冊(cè)答案