科目:高中數(shù)學 來源: 題型:
a1an+1 |
1 |
a1 |
1 |
a2 |
1 |
a3 |
1 |
a4 |
1 |
a2n-1 |
1 |
a2n |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2an |
an+2 |
1 |
1006 |
1 |
an |
2-2010an |
an |
1 |
2 |
5n |
2n+1 |
查看答案和解析>>
科目:高中數(shù)學 來源:安徽模擬 題型:解答題
2an |
an+2 |
1 |
1006 |
1 |
an |
2-2010an |
an |
1 |
2 |
5n |
2n+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)求g2(x),g3(x)的表達式,并猜想gn(x)(n∈N*)的表達式(直接寫出猜想結(jié)果);
(2)若關(guān)于x的函數(shù)y=x2+(x)(n∈N*)在區(qū)間(-∞,-1]上的最小值為6,求n的值.(符號“”表示求和,例如:=1+2+3+…+n).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知等差數(shù)列{an}的首項為4,公差為4,其前n項和為Sn,則數(shù)列 {}的前n項和為( 。
| A. |
| B. |
| C. |
| D. |
|
考點: | 數(shù)列的求和;等差數(shù)列的性質(zhì). |
專題: | 等差數(shù)列與等比數(shù)列. |
分析: | 利用等差數(shù)列的前n項和即可得出Sn,再利用“裂項求和”即可得出數(shù)列 {}的前n項和. |
解答: | 解:∵Sn=4n+=2n2+2n, ∴. ∴數(shù)列 {}的前n項和===. 故選A. |
點評: | 熟練掌握等差數(shù)列的前n項和公式、“裂項求和”是解題的關(guān)鍵. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com