Processing math: 100%
17.已知tanα=2,則12sinαcosα+cos2α=1.

分析 利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.

解答 解:∵tanα=2,則12sinαcosα+cos2α=sin2α+cos2α2sinαcosα+cos2α=tan2α+12tanα+1=4+14+1=1,
故答案為:1.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面為邊長為1的正方形,側(cè)棱AA1=2
(1)求直線DC與平面ADB1所成角的大��;
(2)在棱上AA1是否存在一點P,使得二面角A-B1C1-P的大小為30°,若存在,確定P的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題錯誤的是( �。�
A.命題“若x2=1,則x=1”的否定形式為:“若x2=1,則x≠1”.
B.命題“若x2+y2=0,則x=y=0”的逆否命題為真.
C.△ABC中,sinA>sinB是A>B的充要條件.
D.若向量a滿足a>0,則ab的夾角為銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.有5個男生和3個女生,從中選出5人擔(dān)任5門不同學(xué)科的科代表,求分別符合下列條件的選法數(shù):
(1)有男生、有女生且男生人數(shù)多于女生;
(2)某男生一定要擔(dān)任數(shù)學(xué)科代表;
(3)某女生必須包含在內(nèi),但不擔(dān)任數(shù)學(xué)科代表;
( 4 ) 某女生一定擔(dān)任語文科代表,某男生必須擔(dān)任科代表,但不擔(dān)任數(shù)學(xué)科代表.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若3m=b,則log32b=( �。�
A.2mB.m2C.m2D.m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=|log25(x+1)-a|+2a+1,x∈[0,24],且a∈(0,1)
(Ⅰ)當(dāng)a=12時,求f(x)的最小值及此時x的值;
(Ⅱ)當(dāng)f(x)的最大值不超過3時,求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為\left\{\begin{array}{l}x=cosφ\\ y=sinφ\end{array}(φ為參數(shù)),曲線C2的參數(shù)方程為\left\{\begin{array}{l}x=acosφ\\ y=bsinφ\end{array}(a>b>0,φ為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=α與C1,C2各有一個交點,當(dāng)α=0時,這兩個交點間的距離為2,當(dāng)α=π2時,這兩個交點重合.
(Ⅰ)分別說明C1,C2是什么曲線,并求a與b的值;
(Ⅱ)設(shè)當(dāng)α=π4時,l與C1,C2的交點分別為A1,B1,當(dāng)α=-π4時,l與C1,C2的交點分別為A2,B2,求直線A1 A2、B1B2的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,已知a=17,b=24,A=45°,則此三角形(  )
A.無解B.有兩解C.有一解D.解的個數(shù)不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=logax(a>0且a≠1)在區(qū)間[1,2]上的最大值與函數(shù)g(x)=-4x在區(qū)間[1,2]上的最大值互為相反數(shù).
(1)求a的值;
(2)若函數(shù)F(x)=f(x2-mx-m)在區(qū)間(-∞,1-3)上是減函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案