12.函數(shù)y=x3-3x2-9x(0<x<4)的極小值是-27.

分析 求導(dǎo),令f′(x)=0,解方程,分析導(dǎo)函數(shù)的變化,從而可知函數(shù)的極值.

解答 解:由已知得f′(x)=3x2-6x-9,
f′(x)=0⇒x1=-1(舍),x2=3,
又函數(shù)f(x)的定義域是(0,4),則x變化時,f′(x)的變化情況如下:
當(dāng)0<x<3時,f′(x)<0函數(shù)f(x)是減函數(shù),
當(dāng)3<x<4時,f′(x)>0函數(shù)f(x)是增函數(shù),
∴當(dāng)x=3時,函數(shù)f(x)取得極小值為-27.
故答案為:-27.

點評 考查利用導(dǎo)數(shù)研究函數(shù)的極值問題,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)P是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上一點,過原點O作焦半徑PF1的平行線交橢圓在P點處的切線于T,則OT=a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知正項數(shù)列{an}滿足a1=1,an2=2an-12+1;
(1)求證:{an2+1}是等比數(shù)列;
(2)令bn=$\frac{2^n}{{{a_n}+{a_{n+1}}}}$,且數(shù)列{bn}的前n項和為Sn,求Sn•(Sn+2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)常數(shù)a>0,函數(shù)f(x)=$\frac{x^2}{1+x}$-alnx
(Ⅰ)當(dāng)a=$\frac{3}{4}$時,求f(x)的最小值;
(Ⅱ)求證:f(x)有唯一的極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x(x+a)-lnx,其中a為常數(shù).
(1)當(dāng)a=-1時,求f(x)的極值;
(2)若f(x)是區(qū)間$(\frac{1}{2},1)$內(nèi)的單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若a>0,b>0,f(x)=4x3-ax2-2bx+2在x=1處有極值,則a+b=(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為測得河對岸塔AB的高,先在河岸上選一點C,使C在塔底B的正東方向上,測得點A的仰角為60°,再由點C沿北偏東15°方向走10m到位置D,測得∠BDC=45°,則塔AB的高是( 。
A.10 mB.10$\sqrt{2}$ mC.10$\sqrt{3}$ mD.10$\sqrt{6}$ m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列$\frac{1}{3},\frac{3}{5},\frac{5}{8},\frac{7}{12},\frac{9}{17}…$的第6項為$\frac{11}{23}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,a=3$\sqrt{3}$,b=3,A=$\frac{π}{3}$,則C=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊答案