分析 求導(dǎo),令f′(x)=0,解方程,分析導(dǎo)函數(shù)的變化,從而可知函數(shù)的極值.
解答 解:由已知得f′(x)=3x2-6x-9,
f′(x)=0⇒x1=-1(舍),x2=3,
又函數(shù)f(x)的定義域是(0,4),則x變化時,f′(x)的變化情況如下:
當(dāng)0<x<3時,f′(x)<0函數(shù)f(x)是減函數(shù),
當(dāng)3<x<4時,f′(x)>0函數(shù)f(x)是增函數(shù),
∴當(dāng)x=3時,函數(shù)f(x)取得極小值為-27.
故答案為:-27.
點評 考查利用導(dǎo)數(shù)研究函數(shù)的極值問題,屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 m | B. | 10$\sqrt{2}$ m | C. | 10$\sqrt{3}$ m | D. | 10$\sqrt{6}$ m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com