精英家教網 > 高中數學 > 題目詳情

設函數數學公式,且αsinα-βsinβ>0,則下列不等式必定成立的是


  1. A.
    α>β
  2. B.
    α<β
  3. C.
    α+β>0
  4. D.
    α2>β2
D
分析:構造函數f(x)=xsinx,x∈,利用奇偶函數的定義可判斷其奇偶性,利用f′(x)=sinx+xcosx可判斷f(x)=xsinx,x∈[0,]與x∈[-,0]上的單調性,從而可選出正確答案.
解答:令f(x)=xsinx,x∈,
∵f(-x)=-x•sin(-x)=x•sinx=f(x),
∴f(x)=xsinx,x∈為偶函數.
又f′(x)=sinx+xcosx,
∴當x∈[0,],f′(x)>0,即f(x)=xsinx在x∈[0,]單調遞增;
同理可證偶函數f(x)=xsinx在x∈[-,0]單調遞減;
∴當0≤|β|<|α|≤時,f(α)>f(β),即αsinα-βsinβ>0,反之也成立;
故選D.
點評:本題考查正弦函數的單調性,難點在于構造函數f(x)=xsinx,x∈,通過研究函數f(x)=xsinx,的奇偶性與單調性解決問題,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=sin(2x+
π
3
)
,則下列結論正確的是(  )
①f(x)的圖象關于直線x=
π
3
對稱
②f(x)的圖象關于點(
π
4
,0)
對稱
③f(x)的圖象向左平移
π
12
個單位,得到一個偶函數的圖象
④f(x)的最小正周期為π,且在[0,
π
6
]
上為增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知銳角△ABC中內角A、B、C的對邊分別為a、b、c,且sin2A+sin2B=sin2C+sinAsinB.
(1)求角C的值;
(2)設函數f(x)=sin(ωx-
π6
)-cosωx(ω>0)
,且f(x)圖象上相鄰兩最高點間的距離為π,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•濟南二模)設函數f(x)=sin(ωx+
π
3
)+sin(ωx-
π
3
)+
3
cosωx
(其中ω>0),且函數f(x)圖象的兩條相鄰的對稱軸間的距離為
π
2

(1)求ω的值;
(2)將函數y=f(x)的圖象上各點橫坐標伸長到原來的2倍,縱坐標不變,得到函數y=g(x)的圖象,求函數g(x)在區(qū)間[0,
π
2
]
的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源:2013年甘肅省天水一中高考數學三模試卷(理科)(解析版) 題型:選擇題

設函數,且αsinα-βsinβ>0,則下列不等式必定成立的是( )
A.α>β
B.α<β
C.α+β>0
D.α2>β2

查看答案和解析>>

同步練習冊答案