已知直線l經(jīng)過點(1,0)且一個方向向量d=(1,1).橢圓C:=1(m>1)的左焦點為F1.若直線l與橢圓C交于A,B兩點,滿足·=0,求實數(shù)m的值.

 

2+.

【解析】由已知可得直線l的方程:y=x-1,左焦點F1(-1,0),設點A(x1,y1),B(x2,y2),整理得:(2m-1)x2-2mx+2m-m2=0.當m>1時,Δ=4m(2m2-4m+2)>0恒成立.因為=(x1+1,y1),=(x2+1,y2),所以(x1+1)(x2+1)+y1y2=0.(*)

因為y1=x1-1,y2=x2-1,所以(*)式化簡得:x1x2+1=0.

由此可得+1=0,(m>1),由此解得m=2+.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第3課時練習卷(解析版) 題型:填空題

0.9915的近似值是___________.(精確到0.001)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第8課時練習卷(解析版) 題型:解答題

已知雙曲線=1的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于A、B兩點,F(xiàn)1為左焦點.

(1)求雙曲線的方程;

(2)若△F1AB的面積等于6,求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第8課時練習卷(解析版) 題型:填空題

雙曲線的焦點在x軸上,虛軸長為12,離心率為,則雙曲線的標準方程為______________________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第7課時練習卷(解析版) 題型:解答題

已知橢圓=1(a>b>0),點P在橢圓上.

(1)求橢圓的離心率;

(2)設A為橢圓的左頂點,O為坐標原點.若點Q在橢圓上且滿足AQ=AO,求直線OQ的斜率的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第7課時練習卷(解析版) 題型:解答題

設A、B分別為橢圓=1(a>b>0)的左、右頂點,橢圓長半軸的長等于焦距,且直線x=4是它的右準線.

(1)求橢圓的方程;

(2)設P為橢圓右準線上不同于點(4,0)的任意一點,若直線BP與橢圓相交于兩點B、N,求證:∠NAP為銳角.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第7課時練習卷(解析版) 題型:填空題

已知橢圓G的中心在坐標原點,長軸在x軸上,離心率為,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為______________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第6課時練習卷(解析版) 題型:填空題

已知橢圓的中心在原點,焦點在y軸上,若其離心率為,焦距為8,則該橢圓的方程是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:解答題

如圖,已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于.求動點M的軌跡方程,并說明它表示什么.

 

 

查看答案和解析>>

同步練習冊答案