長(zhǎng)方體ABCD—ABCD中,,,則點(diǎn)到平面的距離是(       ) 
A.B.C.D.2
C

試題分析:因?yàn)樵陂L(zhǎng)方體ABCD—ABCD中,,,,可知面對(duì)角線,AC=2,CD1=,則利用,即,故選C
點(diǎn)評(píng):解決該試題的關(guān)鍵是將點(diǎn)到面的距離的求解轉(zhuǎn)換為等體積法,來(lái)求解得到;蛘咦鞒稣{(diào)到面的距離,來(lái)表示求解。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共12分)如圖,四邊形是矩形,平面,上一點(diǎn),平面,點(diǎn)分別是,的中點(diǎn).

(Ⅰ)求證:平面;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)如圖,三棱柱的各棱長(zhǎng)均為2,側(cè)面底面,側(cè)棱與底面所成的角為
(1) 求直線與底面所成的角;
(2) 在線段上是否存在點(diǎn),使得平面平面?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,空間四邊形ABCD中,M、G分別是BC、CD的中點(diǎn),則等于

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法錯(cuò)誤的是(  )
A.棱柱的兩個(gè)底面互相平行B.圓臺(tái)與棱臺(tái)統(tǒng)稱為臺(tái)體
C.棱柱的側(cè)棱垂直于底面D.圓錐的軸截面是一個(gè)等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)幾何體的三視圖如右圖所示,則該幾何體的體積為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

有一塔形幾何體由若干個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為2,且該塔形的表面積(含最底層正方體的底面面積)超過(guò)39,則該塔形中正方體的個(gè)數(shù)至少是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某幾何體的三視圖如圖1所示,它的體積為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,設(shè)是棱長(zhǎng)為的正方體的一個(gè)頂點(diǎn),過(guò)從此頂點(diǎn)出發(fā)的三條棱的中點(diǎn)作截面,對(duì)正方體的所有頂點(diǎn)都如此操作,所得的各截面與正方體各面共同圍成一個(gè)多面體,則關(guān)于此多面體有以下結(jié)論:①有個(gè)頂點(diǎn);②有條棱;③有個(gè)面;④表面積為;⑤體積為.其中正確的結(jié)論是____________.(要求填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案