設(shè)a∈R,關(guān)于x的一元二次方程7x2-(a+13)x+a2-a-2=0有兩實(shí)數(shù)根x1、x2,且0<x1<1<x2<2,求a的取值范圍.

   

思路分析:若把方程左邊看成二次函數(shù)f(x),它的圖象是開口向上的拋物線,它在(0,1)和(1,2)區(qū)間內(nèi)與x軸相交的充要條件是f(0)>0,f(1)<0,f(2)>0,所以只需解不等式組即可求得a的取值范圍.

    解:設(shè)f(x)=7x2-(a+13)x+a2-a-2.

    ∵x1、x2是方程f(x)=0的兩個實(shí)根,0<x1<1,1<x2<2,

    ∴-2<a<-1或3<a<4.

    ∴a的取值范圍是-2<a<-1或3<a<4.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={-1,1,3,5}和N={-1,1,2,4}.設(shè)關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1(a,b∈R).
(Ⅰ)若b=1時,從集合M取一個數(shù)作為a的值,求方程f(x)=0有解的概率;
(Ⅱ)若從集合M和N中各取一個數(shù)作為a和b的值,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江一模)設(shè)f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x-2)=f(x+2)且當(dāng)x∈[-2,0]時,f(x)=(
1
2
x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個不同的實(shí)數(shù)根,則a的取值范圍是
34
,2)
34
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某種植物種子每粒成功發(fā)芽的概率都為
13
,某植物研究所進(jìn)行該種子的發(fā)芽實(shí)驗(yàn),每次實(shí)驗(yàn)種一料種子,每次實(shí)驗(yàn)結(jié)果相互獨(dú)立.假定某次實(shí)驗(yàn)種子發(fā)芽則稱該次實(shí)驗(yàn)是成功的,如果種子沒有發(fā)芽,則稱該次實(shí)驗(yàn)是失敗的.若該研究所共進(jìn)行四次實(shí)驗(yàn),設(shè)ξ表示四次實(shí)驗(yàn)結(jié)束時實(shí)驗(yàn)成功的次數(shù)與失敗的次數(shù)之差的絕對值;
(1)求隨機(jī)變量ξ的數(shù)學(xué)期望
(2)記“關(guān)于x的不等式 ξx2-ξx+1>0的解集是實(shí)數(shù)集R”為事件A,求事件A發(fā)生的概率P(A).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2005•金山區(qū)一模)設(shè)非零常數(shù)a、b、c∈R,且a、b同號,b、c異號,則關(guān)于x的方程a•4x+b•2x+c=0( 。

查看答案和解析>>

同步練習(xí)冊答案