分析 (1)連接AC交BD于O,由底面ABCD是菱形,可得O為AC的中點,又Q是PA的中點,得OQ∥PC,由線面平行的判定得PC∥平面BDQ;
(2)由底面ABCD是菱形,得BD⊥AC,結(jié)合PB=PD,得PO⊥BD,由線面垂直的判定得BD⊥平面PAC.
解答 證明:(1)如圖,
連接AC交BD于O,∵底面ABCD是菱形,
∴O為AC的中點,連接QO,
∵Q是PA的中點,∴OQ∥PC,
又PC?平面BDQ,OQ?平面BDQ,
∴PC∥平面BDQ;
(2)∵底面ABCD是菱形,∴BD⊥AC,
又PB=PD,O為BD的中點,∴PO⊥BD,
又PO∩AC=O,
∴BD⊥平面PAC.
點評 本題考查直線與平面平行、直線與平面垂直的判定,考查空間想象能力和思維能力,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,+∞) | B. | (0,2) | C. | ($\sqrt{2}$,+∞) | D. | (0,$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1+\frac{1}{{2}^{n}}$ | B. | $\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$-$\frac{1}{{2}^{n}}$ | ||
C. | $\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$+$\frac{1}{{2}^{n-1}}$ | D. | $\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$-$\frac{1}{{2}^{n-1}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{y^2}{5}+\frac{x^2}{4}=1$ | B. | $\frac{x^2}{12}+\frac{y^2}{3}=1$ | C. | x2=-12y | D. | $\frac{y^2}{6}-\frac{x^2}{3}=1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3$\sqrt{2}$ | B. | 2$\sqrt{5}$ | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com