已知⊙的邊分別相切于,與外接圓相切于, 是的中點(如圖).

求證:


 

 

 

 

 

 

 

解析:已知⊙的邊分別相切

,與外接圓相切于,

都是⊙的半徑,

        ……5分

∴ 由對稱性知,

.           

             ……10分

又∵,∴

                                 ……15分

作兩圓的公切線,則

又∵,即

    故.                               ……20分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Rt△ABC的兩條直角邊長分別為a、b,斜邊長為c,則直線ax+by+c=0與圓x2+y2=1的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

[選做題]本題包括A、B、C、D共4小題,請從這4小題中選做2小題,每小題10分,共20分.
A.如圖,AD是∠BAD的角平分線,⊙O過點A且與BC邊相切于點D,與AB,AC分別交于E、F兩點.求證:EF∥BC.
B.已知M=
.
1-2
3-7
.
,求M-1
C.已知直線l的極坐標方程為θ=
π
4
(ρ∈R),它與曲線C
x=1+2cosα
y=2+2sinα
(α為參數(shù))相較于A、B兩點,求AB的長.
D.設(shè)函數(shù)f(x)=|x-2|+|x+2|,若不等式|a+b|-|4a-b|≤|a|,f(x)對任意a,b∈R,且a≠0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知△ABC三個頂點的坐標分別為A(4,1),B(0,3),C(2,4),邊AC的中點為D,求AC邊上中線BD所在的直線方程并化為一般式;
(2)已知圓C的圓心是直線2x+y+1=0和x+3y-4=0的交點且與直線3x+4y+17=0相切,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請在二題中任選一題作答,如果多做,則按所做的第一題評分)
(1)(幾何證明選做題)如圖,已知RT△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則
BD
DA
=
16
9
16
9

(2)(坐標系與參數(shù)方程選做題)已知圓C的圓心是直線
x=t
y=1+t
(t為參數(shù))與x軸的交點,且圓C與直線x+y+3=0相切.則圓C的方程為
(x+1)2+y2=2
(x+1)2+y2=2

查看答案和解析>>

同步練習(xí)冊答案