已知函數(shù)f(x)=若f(2-x2)>f(x),則實數(shù)x的取值范圍是( )
A.(-∞,-1)∪(2,+∞)
B.(-∞,-2)∪(1,+∞)
C.(-1,2)
D.(-2,1)
【答案】分析:先通過基本函數(shù)得到函數(shù)的單調性,再利用單調性定義列出不等式,求出不等式的解集即可得到實數(shù)x的范圍.
解答:解:易知f(x)在R上是增函數(shù),
∵f(2-x2)>f(x)
∴2-x2>x,
解得-2<x<1.
則實數(shù)x的取值范圍是(-2,1).
故選D.
點評:本題主要考查利用函數(shù)的單調性來解不等式,這類題既考查不等式的解法,也考查了函數(shù)的性質,這也是函數(shù)方程不等式的命題方向,應引起足夠的重視.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列說法正確的是( 。
A、命題:“已知函數(shù)f(x),若f(x+1)與f(x-1)均為奇函數(shù),則f(x)為奇函數(shù),”為直命題B、“x>1”是“|x|>1”的必要不充分條件C、若“p且q”為假命題,則p,q均為假命題D、命題p:”?x∈R,使得x2+x+1<0”,則?p:”?x∈R,均有x2+x+1≥0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x),若在[a,b]上有f(a)f(b)<0,則y=f(x)在(a,b)內(nèi)必有零點
×
×

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x),若f(x)=x,則稱x為f(x)的“不動點”;若f(f(x))=x,則稱x為f(x)的“穩(wěn)定點”.記集合A={x|f(x)=x},B={x|f(f(x))=x}
(1)已知A≠∅,若f(x)是在R上單調遞增函數(shù),是否有A=B?若是,請證明.
(2)記|M|表示集合M中元素的個數(shù),問:(i)若函數(shù)f(x)=ax2+bx+c(a≠0),若|A|=0,則|B|是否等于0?若是,請證明,(ii)若|B|=1,試問:|A|是否一定等于1?若是,請證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•綿陽二模)已知函數(shù)f(x),若對給定的三角形ABC,它的三邊的長a、b、c均在函數(shù)f(x)的定義域內(nèi),都有f(a)、f(b)、f(c)也為某三角形的三邊的長,則稱f(x)是△ABC的“三角形函數(shù)”.下面給出四個命題:
①函數(shù)f1(x)=
x
,x∈(0,+∞)是任意三角形的“三角形函數(shù)”;
②若定義在(O,+∞)上的周期函數(shù)f2(x)的值域也是(0,+∞),則f2(x)是任意三角形的“三角形函數(shù)”;
③若函數(shù)f3(x)=x3-3x+m在區(qū)間(
2
3
,
4
3
)上是某三角形的“三角形函數(shù)”,則m的取值范圍是(
62
27
,+∞)
④若a、b、c是銳角△ABC的三邊長,且a、b、c∈N+,則f4(x)=x2+lnx(x>0)是△ABC的“三角形函數(shù)”.
以上命題正確的有
①④
①④
(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省中山一中高三(上)第五次月考數(shù)學試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)=,若f(a)=,則實數(shù)a的值為( )
A.-1
B.
C.-1或
D.1或-

查看答案和解析>>

同步練習冊答案