7.曲線f(x)=x+lnx在x=1處的切線方程是( 。
A.y=x-1B.y=x-2C.y=2x-1D.y=2x-2

分析 求出函數(shù)的導(dǎo)數(shù),可得切線的斜率,運(yùn)用點(diǎn)斜式方程即可得到所求切線的方程.

解答 解:f(x)=x+lnx的導(dǎo)數(shù)為f′(x)=1+$\frac{1}{x}$,
可得f(x)=x+lnx在x=1處的切線斜率為1+1=2,
切點(diǎn)為(1,1),
即有f(x)=x+lnx在x=1處的切線方程為y-1=2(x-1),
即為y=2x-1.
故選:C.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運(yùn)用點(diǎn)斜式方程是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,c=4,a=2,C=45°,則sinA=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知(x1,y1),(x2,y2)是方程組$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$的兩組解,求(x1-x22+(y1-y22的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知AC是以AB為直徑的⊙O的一條弦,點(diǎn)D是劣弧$\widehat{AC}$上的一點(diǎn),過點(diǎn)D作DH⊥AB于H,交AC于E,延長(zhǎng)線交⊙O于F.
(Ⅰ)求證:AD2=AE•AC;
(Ⅱ)延長(zhǎng)ED到P,使PE=PC,求證:PE2=PD•PF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,已知a-bsin($\frac{π}{2}$-C)=c•sinB.
(1)求B;
(2)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=kx2-lnx(k∈R).
(1)試討論函數(shù)f(x)的單調(diào)性;
(2)證明:$\frac{ln2}{{2}^{4}}+\frac{ln3}{{3}^{4}}+\frac{ln4}{{4}^{4}}$+…+$\frac{lnn}{{n}^{4}}$<$\frac{1}{2e}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在等差數(shù)列{an}中,a1+a2=5,a3+a4=17.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和為Sn,求Sn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.假設(shè)你家訂了一份牛奶,奶哥在早上6:00---7:00之間隨機(jī)地把牛奶送到你家,而你在早上6:30---7:30之間隨機(jī)地離家上學(xué),則你在離開家前能收到牛奶的概率是( 。
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線方程為y=±$\frac{1}{2}$x,且焦點(diǎn)到漸近線的距離為$\sqrt{3}$,則雙曲線的方程為( 。
A.$\frac{x^2}{4}-{y^2}$=1B.$\frac{x^2}{3}-\frac{y^2}{12}$=1C.$\frac{x^2}{12}-\frac{y^2}{3}$=1D.${x^2}-\frac{y^2}{4}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案