已知為橢圓的左、右焦點(diǎn),若為橢圓上一點(diǎn),且△的內(nèi)切圓的周長等于,則滿足條件的點(diǎn)
A.0個B.1個C.2個D.4個
C
解:設(shè)△MF1F2的內(nèi)切圓的內(nèi)切圓的半徑等于r,則由題意可得 2πr=3π,∴r=
由橢圓的定義可得  MF1 +MF2=2a=10,又 2c=6,
∴△的面積等于 ( MF1 +MF2+2c )r=8r=12.
又△的面積等于   2c yM=12,∴yM=4,故 M是橢圓的短軸頂點(diǎn),故滿足條件的點(diǎn)M有2個,
故選  C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分
已知橢圓的離心率為,以原點(diǎn)為圓心,
橢圓的短半軸長為半徑的圓與直線相切.
⑴求橢圓C的方程;
⑵設(shè),是橢圓上關(guān)于軸對稱的任意兩個不同的點(diǎn),連結(jié)交橢圓
于另一點(diǎn),求直線的斜率的取值范圍;
⑶在⑵的條件下,證明直線軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知傾斜角的直線過橢圓的右焦點(diǎn)F交橢圓于A、B兩點(diǎn),P為右準(zhǔn)線上任意一點(diǎn),則為。ā。
A.鈍角;    。拢苯;     C.銳角;    。模加锌赡埽

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,經(jīng)過點(diǎn),離心率

(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓的左、右頂點(diǎn)分別為,點(diǎn)為直線上任意一點(diǎn)(點(diǎn)不在軸上),
連結(jié)交橢圓于點(diǎn),連結(jié)并延長交橢圓于點(diǎn),試問:是否存在,使得成立,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓的方程為,過右焦點(diǎn)且不與軸垂直的直線與橢圓交于,兩點(diǎn),若在橢圓的右準(zhǔn)線上存在點(diǎn),使為正三角形,則橢圓的離心率的取值范圍是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是橢圓上的一點(diǎn),若到橢圓右準(zhǔn)線的距離是,則點(diǎn)到右焦點(diǎn)的距離     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的焦點(diǎn)與橢圓的焦點(diǎn)重合,則此雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為橢圓的兩個焦點(diǎn),以為圓心作圓,已知圓經(jīng)過橢圓的中心,且與橢圓相交于點(diǎn),若直線恰與圓相切,則該橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P是橢圓上的一點(diǎn),是該橢圓的兩個焦點(diǎn),若的內(nèi)切圓的半徑為,則( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案