分析 (1)求出函數(shù)的導(dǎo)數(shù),求出a的值,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)令$φ(x)=\frac{e^x}{{f(x)-{x^3}}}=\frac{e^x}{{{x^2}-x+1}}$,通過求導(dǎo)得到函數(shù)的單調(diào)性,通過討論x的范圍證出結(jié)論即可.
解答 解:(1)依題意,f'(x)=3x2+2x-a,f'(1)=3+2-a=4,a=1,
故f'(x)=3x2+2x-1=(3x-1)(x+1),
令f'(x)>0,則x<-1或$x>\frac{1}{3}$; 令f'(x)<0,則$-1<x<\frac{1}{3}$,
故當(dāng)x=-1時,函數(shù)f(x)有極大值f(-1)=2,
當(dāng)$x=\frac{1}{3}$時,函數(shù)f(x)有極小值$f({\frac{1}{3}})=\frac{22}{27}$…(5分)
證明:(2)由(1)知a=1,令$φ(x)=\frac{e^x}{{f(x)-{x^3}}}=\frac{e^x}{{{x^2}-x+1}}$,
則$φ'(x)=\frac{{{e^x}({{x^2}-x+1})-({2x-1}){e^x}}}{{{{({{x^2}-x+1})}^2}}}=\frac{{{e^x}({x-1})({x-2})}}{{{{({{x^2}-x+1})}^2}}}$,
可知φ(x)在(0,1)上單調(diào)遞增,在(1,2)上單調(diào)遞減,令g(x)=x.
①當(dāng)x∈[0,1]時,φ(x)min=φ(0)=1,g(x)max=1,
所以函數(shù)φ(x)的圖象在g(x)圖象的上方.
②當(dāng)x∈[1,2]時,函數(shù)φ(x)單調(diào)遞減,
所以其最小值為$φ(2)=\frac{e^2}{3},g(x)$最大值為2,而$\frac{e^2}{3}>2$,
所以函數(shù)φ(x)的圖象也在g(x)圖象的上方.
綜上可知,當(dāng)0≤x≤a+1時,$\frac{e^x}{{f(x)-{x^3}}}>x$…(12分)
點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 內(nèi)切 | B. | 相離 | C. | 外切 | D. | 相交 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | 2 | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南永州市高三高考一?荚嚁(shù)學(xué)(理)試卷(解析版) 題型:解答題
選修4-5:不等式選講
已知函數(shù).
(Ⅰ)若,解不等式:;
(Ⅱ)若的解集為,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖北省百所重點校高三聯(lián)合考試數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
為得到函數(shù)的圖象,可將函數(shù)的圖象( )
A.向左平移個單位 B.向左平移個單位
C.向右平移個單位 D.向右平移個單位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com