已知函數(shù)的定義域?yàn)镽,對(duì)任意的x1,x2都滿足f(x1+x2)=f(x1)+f(x2),當(dāng)x>0時(shí),f(x)>0.
(I)試判斷并證明f(x)的奇偶性;
(II)試判斷并證明f(x)的單調(diào)性;
(III)若f(cos2θ-3)+f(4m-2mcosθ)>0對(duì)所有的θ∈[0,
π2
]
均成立,求實(shí)數(shù)m 的取值范圍.
分析:(I)先求得f(x),令x=y=0,有f(0)=0,再令x1=x,x2=-x,即f(-x)=-f(x),故f(x)為奇函數(shù).
(II)在R上任取x1<x2,則x1-x2<0,再比較f(x1)和f(x2)的大小,從而得出:f(x)是增函數(shù);
(III)根據(jù)f(x)為R上的增函數(shù)也是奇函數(shù),f(cos2θ-3)+f(4m-2mcosθ)>0對(duì)所有的θ均成立可轉(zhuǎn)化成cos2θ-3>2mcosθ-4m對(duì)所有的θ∈[0,
π
2
]
均成立,然后利用分離法即可求出實(shí)數(shù)m的取值范圍.對(duì)于任意x1,x2∈R,有f(x1•x2)=f(x1)+f(x2).令x1=x2=1,可求f(1);再賦值可求f(-1)=0,進(jìn)而可求f(-1×x)=f(-x)=f(1)+f(x)=f(x),可得f(x)為偶函數(shù);
解答:解:(I)∵f(x1+x2)=f(x1)+f(x2),令x1=x2=0得f(0)=0.
再令x1=x,x2=-x,則f(0)=f(x)+f(-x)=0,∴f(-x)=-f(x).
∴f(x)為R上的奇函數(shù).
(II)設(shè)x1<x2,則x2-x1>0,當(dāng)x>0時(shí)f(x)>0.∴f(x2-x1)>0
由f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)>0,
∴f(x2)>f(x1
∴f(x)為R上的增函數(shù).
(III)∵f(cos2θ-3)+f(4m-2mcosθ)>0,∴f(cos2θ-3)>-f(4m-2mcosθ)
∵f(x)為R上的奇函數(shù),,即f(-x)=-f(x),∴f(cos2θ-3)>f(2mcosθ-4m)
又∵f(x)為R上的增函數(shù),cos2θ-3>2mcosθ-4m對(duì)所有的θ∈[0,
π
2
]
均成立,2cos2θ-4>2m(cosθ-2)恒成立,
又∵cosθ-2<0,
m>
cos2θ-2
cosθ-2
恒成立,
又∵
cos2θ-2
cosθ-2
=
cos2θ-4+2
cosθ-2
=cosθ-2+
2
cosθ-2
+4
,又θ∈[0,
π
2
]
,
∴0≤cosθ≤1,∴cosθ-2<0,
cosθ-2+
2
cosθ-2
+4≤4-4
2

當(dāng)且僅當(dāng)cosθ-2=
2
cosθ-2
cosθ=2-
2
時(shí)取等號(hào).
[
cos2θ-2
cosθ-2
]max=4-2
2

m>4-2
2
點(diǎn)評(píng):本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)奇偶性的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省溫州中學(xué)高二下學(xué)期期中考試數(shù)學(xué)(文) 題型:解答題

已知函數(shù)的定義域?yàn)镽,且當(dāng)時(shí),恒成立,
(1)求證:的圖象關(guān)于點(diǎn)對(duì)稱;
(2)求函數(shù)圖象的一個(gè)對(duì)稱點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省聊城市高三下學(xué)期期初考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)的定義域?yàn)镽,當(dāng)時(shí),,且對(duì)任意的實(shí)數(shù)R,等式成立.若數(shù)列滿足,且

(N*),則的值為(     )

A.4024             B.4023             C.4022             D.4021

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省高三10月月考理科數(shù)學(xué)卷 題型:選擇題

已知函數(shù)的定義域?yàn)镽,它的反函數(shù)為,如果互為反函數(shù),且,則的值為(      )

A、           B、0            C、           D、

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆雅安中學(xué)高二第二學(xué)期期中考試數(shù)學(xué)試題 題型:選擇題

已知函數(shù)的定義域?yàn)镽,當(dāng)時(shí),,且對(duì)任意的實(shí)數(shù)R,等式成立.若數(shù)列滿足,且 (N*),則的值為(    ) 

A. 4016         B.4017             C.4018       D.4019

 

查看答案和解析>>

同步練習(xí)冊(cè)答案