分析 (1)圓C1:ρ=-2cosθ,即ρ2=-2ρcosθ,利用互化公式可得圓C1的普通方程.由曲線C2:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}}$(θ為參數(shù)),利用平方關系可得:曲線C2的普通方程.
(2)由(1)可知:C1(-1,0)則直線l的參數(shù)方程為:$\left\{{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}(t}\right.$為參數(shù)),將其代入$\frac{x^2}{4}+{y^2}=1$,有$\frac{13}{4}{t^2}-t-3=0$,圓心C1到A,B兩點的距離之積為|t1t2|.
解答 解:(1)圓C1:ρ=-2cosθ,即ρ2=-2ρcosθ,可得x2+y2=2x圓C1的普通方程為:(x+1)2+y2=1.
由曲線C2:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}}$(θ為參數(shù)),利用平方關系可得:曲線C2的普通方程為:$\frac{x^2}{4}+{y^2}=1$.
(2)由(1)可知:C1(-1,0)則直線l的參數(shù)方程為:$\left\{{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}(t}\right.$為參數(shù)),
將其代入$\frac{x^2}{4}+{y^2}=1$,有$\frac{13}{4}{t^2}-t-3=0$,${t_1}{t_2}=-\frac{12}{13}$.
所以圓心C1到A,B兩點的距離之積為$|{{t_1}{t_2}}|=\frac{12}{13}$.
點評 本題考查了極坐標化為直角坐標方程、參數(shù)方程化為普通方程、直線參數(shù)方程 的應用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | A?B | B. | B?A | ||
C. | A=B | D. | A 與 B 關系不確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{7}$ | B. | $\frac{6}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{1}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com