分析 (1)利用直接法求曲線H的方程;
(2)確定${{k}_{2}}^{2}$=$\frac{1}{4{{k}_{1}}^{2}}$,利用d1>d2,得$\frac{1}{\sqrt{{{k}_{1}}^{2}+1}}$>$\frac{1}{\sqrt{\frac{1}{4{{k}_{1}}^{2}}+1}}$,即可求k1的取值范圍.
解答 解:(1)設(shè)M(x,y),則$\frac{y+1}{x+2}•\frac{y-1}{x-2}$=-$\frac{1}{2}$,
化簡,可得曲線H的方程為$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}$=1;
(2)PC的方程為y-1=k1(x+2),PB的方程為y-1=k2(x+2),
∵k1k2=-$\frac{1}{2}$,∴${{k}_{2}}^{2}$=$\frac{1}{4{{k}_{1}}^{2}}$,
∵d1>d2,
∴$\frac{1}{\sqrt{{{k}_{1}}^{2}+1}}$>$\frac{1}{\sqrt{\frac{1}{4{{k}_{1}}^{2}}+1}}$,
∴$0<{k}_{1}<\frac{\sqrt{2}}{2}$.
點評 本題考查軌跡方程,考查斜率的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com