(文)長度為6的動(dòng)弦AB在拋物線y2=4x上滑動(dòng),AB中點(diǎn)到y(tǒng)軸距離的最小值為2,則直線AB的斜率為(  )
A、±
B、±
3
C、±
2
D、±2
考點(diǎn):拋物線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由拋物線定義,知弦AB的中點(diǎn)M到Y(jié)軸的距離最短時(shí)弦AB過焦點(diǎn),由此設(shè)出直線AB的方程,用代數(shù)法結(jié)合橢圓的弦長公式能求出結(jié)果.
解答: 解:∵長度為6的動(dòng)弦AB在拋物線y2=4x上滑動(dòng),AB中點(diǎn)到y(tǒng)軸距離的最小值為2,
∴AB過拋物線y2=4x的焦點(diǎn)F(1,0),
設(shè)AB的方程為y=k(x-1),并代入拋物線y2=4x,
得k2(x-1)2=4x,
整理,得k2x2-(2k2+4)x+k2=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=2+
4
k2
,x1x2=1,
∵|AB|=6,
∴6=
(1+k2)[(2+
4
k2
)-4]
,
整理,得5k4-8k2-4=0,
解得k2=2,或k2=-
2
5
(舍)
∴k=±
2

故選:C.
點(diǎn)評(píng):本題考查直線的斜率的求法,是中檔題,解題時(shí)要熟練掌握拋物線性質(zhì),注意弦長公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且A,B,C成等差數(shù)列,a,b,c也成等差數(shù)列,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,其中正(主)視圖中半圓的半徑為1,則該幾何體的體積為(  )
A、24-
π
3
B、24-
2
C、24-π
D、24-
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x),且為減函數(shù),又知f(1-a)+f(1-a2)<0,則a的取值范圍為( 。
A、(-2,1)
B、(-∞,-2)∪(1,+∞)
C、(0,1)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3≤x<6},B={x|2<x<9}
(1)求:A∩B (2)求:(∁RB)∪A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若n<m<0,則
m2+2mn+n2
-
m2-2mn+n2
等于( 。
A、2mB、2n
C、-2mD、-2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記函數(shù)f(x)=lg(x+1)的定義域?yàn)榧螹,函數(shù)g(x)=ln
x-2
x+2
的定義域?yàn)榧螻,求:
(Ⅰ)集合M,N; 
(Ⅱ)(∁RM)∪N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某海上緝私小分隊(duì)駕駛緝私艇以40km/h的速度由A處出發(fā),沿北偏東60°方向進(jìn)行海面巡邏,當(dāng)航行半小時(shí)到達(dá)B處時(shí),發(fā)現(xiàn)北偏西45°方向有一艘船C,若船C位于A的北偏東30°方向上,則緝私艇所在的B處與船C的距離是( 。﹌m.
A、5(
6
+
2
B、5(
6
-
2
C、10(
6
-
2
D、10(
6
+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
AB
=(1,3),
BC
=(2,-1),
OC
=-
1
3
AC
,則C點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案