若方程ax2+ay2-4(a-1)x+4y=0表示圓,求實數(shù)a的取值范圍,并求出半徑最小的圓的方程.

 

a≠0,半徑最小的圓的方程為(x-1)2+(y+1)2=2.

【解析】∵方程ax2+ay2-4(a-1)x+4y=0表示圓,∴a≠0.

∴方程ax2+ay2-4(a-1)x+4y=0可以寫成x2+y2-=0.

∵D2+E2-4F=>0恒成立,

∴a≠0時,方程ax2+ay2-4(a-1)x+4y=0表示圓.設(shè)圓的半徑為r,則

r2=

∴當(dāng)即,a=2時,圓的半徑最小,半徑最小的圓的方程為(x-1)2+(y+1)2=2

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第8課時練習(xí)卷(解析版) 題型:填空題

若雙曲線-y2=1的一個焦點為(2,0),則它的離心率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第6課時練習(xí)卷(解析版) 題型:填空題

方程=1表示橢圓,則k的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第5課時練習(xí)卷(解析版) 題型:解答題

已知圓C:(x-3)2+(y-4)2=4,直線l1過定點A(1,0).

(1)若l1與圓相切,求l1的方程;

(2)若l1與圓相交于P、Q兩點,線段PQ的中點為M,又l1與l2:x+2y+2=0的交點為N,判斷AM·AN是否為定值?若是,則求出定值;若不是,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第5課時練習(xí)卷(解析版) 題型:填空題

已知圓(x-1)2+(y+2)2=6與直線2x+y-5=0的位置關(guān)系是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第4課時練習(xí)卷(解析版) 題型:填空題

已知AC、BD為圓O:x2+y2=4的兩條相互垂直的弦,垂足為M(1,),則四邊形ABCD的面積的最大值為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第4課時練習(xí)卷(解析版) 題型:解答題

已知直線l1、l2分別與拋物線x2=4y相切于點A、B,且A、B兩點的橫坐標(biāo)分別為a、b(a、b∈R).

(1)求直線l1、l2的方程;

(2)若l1、l2與x軸分別交于P、Q,且l1、l2交于點R,經(jīng)過P、Q、R三點作圓C.

①當(dāng)a=4,b=-2時,求圓C的方程;

②當(dāng)a,b變化時,圓C是否過定點?若是,求出所有定點坐標(biāo);若不是,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第3課時練習(xí)卷(解析版) 題型:填空題

定義:曲線C上的點到直線l的距離的最小值稱為曲線C到直線l的距離.已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實數(shù)a=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第10課時練習(xí)卷(解析版) 題型:解答題

已知橢圓=1(a>b>0)的離心率為,且過點P,A為上頂點,F(xiàn)為右焦點.點Q(0,t)是線段OA(除端點外)上的一個動點,

過Q作平行于x軸的直線交直線AP于點M,以QM為直徑的圓的圓心為N.

(1)求橢圓方程;

(2)若圓N與x軸相切,求圓N的方程;

(3)設(shè)點R為圓N上的動點,點R到直線PF的最大距離為d,求d的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案