已知函數(shù)f(x)=x2+bx+c,f(x)≤0的解集為{x|-4≤x≤-1}.
(1)求實數(shù)b,c的值;
(2)求函數(shù)g(x)=
f(x)x
(x>0),求函數(shù)的最小值及此時x的值.
分析:(1)根據(jù)函數(shù)f(x)=x2+bx+c,f(x)≤0的解集為{x|-4≤x≤-1},可得-4,-1是方程x2+bx+c=0的兩根,利用韋達(dá)定理可求實數(shù)b,c的值;
(2)函數(shù)g(x)=
f(x)
x
=
x2+5x+4
x
=x+
4
x
+5
(x>0),利用基本不等式可求函數(shù)的最小值及此時x的值
解答:解:(1)∵函數(shù)f(x)=x2+bx+c,f(x)≤0的解集為{x|-4≤x≤-1}.
∴-4,-1是方程x2+bx+c=0的兩根
-4+(-1)=-b
(-4)×(-1)=c

∴b=5,c=4
∴f(x)=x2+5x+4
(2)函數(shù)g(x)=
f(x)
x
=
x2+5x+4
x
=x+
4
x
+5

∵x>0,∴
4
x
>0

g(x)≥2
x•
4
x
+5=9

當(dāng)且僅當(dāng)
x>0
x=
4
x
,即x=2時取等號
∴函數(shù)g(x)的最小值為9,此時x=2
點評:本題重點考查不等式的解集與方程解之間的關(guān)系,考查基本不等式的運用,解題的關(guān)鍵是搞清不等式的解集與方程解之間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案