不等式(m2-2m-3)x2-(m-3)x-1<0對一切x∈R恒成立,求實數(shù)m的取值范圍.

解:(1)若m2-2m-3=0,則m=-1或m=3.

    當m=-1時,不合題意;

    當m=3時,符合題意.

   (2)若m2-2m-3≠0,即m≠-1,且m≠3時,

    設(shè)f(x)=(m2-2m-3)x2-(m-3)x-1,

    則由題意,得

    解得-<m<3.

    綜合(1)(2),得m的取值范圍是{m|-<m≤3}.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•湖南模擬)已知函數(shù)f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)
5x+1(x>
1
2
)
(x∈R),
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對任意x∈R恒成立;命題q:函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)命題P:x1,x2是方程x2-ax-2=0的兩個實根,不等式|m2-5m-3|≥|x1-x2|對任意實數(shù)a∈[-1,1]恒成立,命題Q:不等式|x-2m|-|x|>1(m>0)有解,若P且Q為真,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a>0,c>0)的圖象與x軸有兩個不同的公共點,且f(c)=0,當0<x<c時,恒有f(x)>0.
(1)當a=
1
3
,c=2時,求不等式f(x)<0的解集;
(2)若以二次函數(shù)的圖象與坐標軸的三個交點為頂點的三角形的面積為8,且ac=
1
2
,求a的值;
(3)若f(0)=1,且f(x)≤m2-2m+1對所有x∈[0,c]恒成立,求正實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:期末題 題型:解答題

若不等式(m2-2m-3)x2-(m-3)x-1<0的解集為R,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案