有4個不同的球,四個不同的盒子,把球全部放入盒內(nèi)(結(jié)果用數(shù)字表示).
(1)共有多少種放法?
(2)恰有一個盒子不放球,有多少種放法?
(3)恰有一個盒內(nèi)放2個球,有多少種放法?
(4)恰有兩個盒不放球,有多少種放法?
(1)256(2)144(3)144(4)84

試題分析:(1)一個球一個球地放到盒子里去,每只球都可有4種獨(dú)立的放法,由分步乘法計數(shù)原理,放法共有:種.                              2.5分
(2)為保證“恰有一個盒子不放球”,先從四個盒子中任意拿出去1個,即將4個球分成2,1,1的三組,有種分法;然后再從三個盒子中選一個放兩個球,其余兩個球,兩個盒子,全排列即可.由分步乘法計數(shù)原理,共有放法:種.           5分
(3)“恰有一個盒內(nèi)放2個球”,即另外三個盒子中恰有一個空盒.因此,“恰有一個盒內(nèi)放2球”與“恰有一個盒子不放球”是一回事.故也有144種放法.               7.5分
(4)先從四個盒子中任意拿走兩個有種,問題轉(zhuǎn)化為:“4個球,兩個盒子,每盒必放球,有幾種放法?”從放球數(shù)目看,可分為(3,1),(2,2)兩類.第一類:可從4個球中先選3個,然后放入指定的一個盒子中即可,有種放法;第二類:有種放法.因此共有種.由分步乘法計數(shù)原理得“恰有兩個盒子不放球”的放法有:種.     10分
點(diǎn)評:本題的求解按照分步計數(shù)原理可先將球分組,選擇盒子,再將球排列到選定的盒子里,這種先選后排的方法是最常用的思路
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

形如45132這樣的數(shù)叫做“五位波浪數(shù)”,即十位數(shù)字、千位數(shù)字均比它們各自相鄰的數(shù)字大,則由1,2, 3, 4, 5可構(gòu)成不重復(fù)的“五位波浪數(shù)”的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從5位男教師和4位女教師中選出3位教師,派到3個班擔(dān)任班主任(每班1位班主任),要求這3位班主任中男、女教師都要有,則不同的選派方案共有:
A.210種B.420種C.630種D.840種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

6人站一排照相,其中有甲乙兩人,則甲乙兩人之間間隔兩人的排法有      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,且展開式的各式系數(shù)和為243.
(I)求a的值。
(II)若,求中含的系數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知)能被整除,則實(shí)數(shù)的值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲、乙兩人從4門課程中各選修2門,則甲、乙所選的課程中恰有1門相同的選法有(   )
A.30種B.24種C.12種D.6種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從5名志愿者中選派4人在星期五、星期六、星期日參加公益活動,每人一天,要求星期五有一人參加,星期六有兩人參加,星期日有一人參加,則不同的選派方法共有(   )
A.120種B.96種C.60種D.48種

查看答案和解析>>

同步練習(xí)冊答案