(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點(diǎn)。
(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
(1)連交于點(diǎn),連.
由是的中點(diǎn),是的中點(diǎn),得到,推出∥平面.
(2) .
【解析】
試題分析:(1)證明:連交于點(diǎn),連.
則是的中點(diǎn),
∵是的中點(diǎn),∴
∵平面,平面,∴∥平面.
(2)法一:設(shè),∵,∴,且,
作,連
∵平面⊥平面,∴平面,
∴∴就是二面角的平面角,
在中,,
在中,
,即二面角的余弦值是.…………12分
解法二:如圖,建立空間直角坐標(biāo)系.
則,,,.
∴,,,
設(shè)平面的法向量是,則
由,取
設(shè)平面的法向量是,則
由,取
記二面角的大小是,則,
即二面角的余弦值是.
考點(diǎn):本題主要考查立體幾何中的平行關(guān)系,角的計(jì)算。
點(diǎn)評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,應(yīng)用空間向量,使問題解答得以簡化。本解答提供了兩種解法,相互對比,各有優(yōu)點(diǎn)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011屆黑龍江省大慶實(shí)驗(yàn)中學(xué)高三高考仿真模擬試題理數(shù) 題型:解答題
(本小題滿分12分)
如右圖,四邊形是圓柱的軸截面,點(diǎn)在圓柱的底面圓周上,是的中點(diǎn),圓柱的底面圓的半徑,側(cè)面積為,.
(Ⅰ)求證:;
(Ⅱ)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省聊城市高三下學(xué)期期初考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點(diǎn)。
(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省贛州市高三第四次月考理科數(shù)學(xué) 題型:解答題
(本題滿分12分)
如右圖,已知AB⊥平面ACD,DE⊥平面ACD,
△ACD為等邊三角形,AD=DE=2AB,F為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求直線BF和平面BCE所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市高三起點(diǎn)考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本小題滿分12分)
如右圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點(diǎn),AE=3,圓O的直徑為9。
(1)求證:平面ABCD平在ADE;
(2)求二面角D—BC—E的平面角的正切值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com