已知函數(shù)f(x)=x4+(a-x)x2+(5-a)對(duì)任意實(shí)數(shù)x恒為正值,求實(shí)數(shù)a的取值范圍.
分析:函數(shù)對(duì)任意實(shí)數(shù)x恒為正值,其實(shí)就是f(x)的最小值大于0,只需證f(x)min>0即可,方法是求出導(dǎo)函數(shù)=0時(shí)的值,分區(qū)間討論函數(shù)的增減性得到f(x)的最小值證明它大于0即可求出a的取值范圍.
解答:解:令f′(x)=4x
3-3x
2+2ax=0,得x=0或4x
2-3x+2a=0
當(dāng)x=0時(shí)f(x)=5-a>0得a<5;
當(dāng)4x
2-3x+2a=0,當(dāng)a≤
時(shí)即x=
;當(dāng)a>
,方程無解.
當(dāng)x>
或x<
時(shí),f′(x)>0,函數(shù)為增函數(shù);當(dāng)
>x>
時(shí),函數(shù)為減函數(shù),因?yàn)楹瘮?shù)f(x)=x
4+(a-x)x
2+(5-a)對(duì)任意實(shí)數(shù)x恒為正值則f(x)
min=f(
)>0;
所以a<5時(shí),函數(shù)對(duì)任意實(shí)數(shù)x恒為正數(shù).
點(diǎn)評(píng):考查學(xué)生會(huì)利用導(dǎo)數(shù)研究函數(shù)極值的能力,以及理解分類討論的數(shù)學(xué)思想.