精英家教網 > 高中數學 > 題目詳情
函數f(x)=2x2-mx+3,當x∈[-2,+∞)時是增函數,則m的取值范圍是( )
A.[-8,+∞)
B.[8,+∞)
C.(-∞,-8]
D.(-∞,8]
【答案】分析:先求出函數f(x)=2x2-mx+3對應拋物線的對稱軸,再由函數在[-2,+∞]上單調遞增,則對稱軸在區(qū)間的左側求解.
解答:解:函數f(x)=2x2-mx+3,
∴其對稱軸為:x=
又∵函數在[-2,+∞]上單調遞增
≤-2,∴m≤-8.
故選C.
點評:本題主要考查二次函數的性質,涉及了二次函數的對稱性和單調性,在研究二次函數單調性時,一定要明確開口方向和對稱軸.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

函數f(x)=2x2-mx+3在(-∞,1]上單調遞減,則m的取值范圍為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=2x2-6x+1在區(qū)間[-1,1]上的最小值為( 。
A、9
B、-3
C、
7
4
D、
11
4

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方遞推數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=2x2+2x的圖象上,其中n為正整數.
(Ⅰ)證明:數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列.
(Ⅱ)設(Ⅰ)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項公式及Tn關于n的表達式.
(Ⅲ)記bn=log(1+2an)Tn,求數列{bn}的前n項之和Sn,并求使Sn>2010的n的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2x2-(k2+k+1)x+15,g(x)=k2x-k,其中k∈R.
(1)設p(x)=f(x)+g(x),若p(x)在(1,4)上有零點,求實數k的取值范圍;
(2)設函數q(x)=
g(x)x≥0
f(x)x<0
是否存在實數k,對任意給定的非零實數x1,存在唯一的非零實數x2(x2≠x1),使得q(x2)=q(x1)?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)=2x2+mx+2n滿足f(-1)=f(5)則f(1)、f(2)、f(4)的關系為( 。

查看答案和解析>>

同步練習冊答案