圓C1:x2+y2-2x-4y=0與圓C2關(guān)于直線l:y=x-3對稱,則C2的方程是( 。
分析:先將圓C1:x2+y2-2x-4y=0化為標(biāo)準(zhǔn)方程為:(x-1)2+(y-2)2=5,所以圓C1的圓心坐標(biāo)為C1(1,2),半徑為
5
,求出C1(1,2)關(guān)于直線l:y=x-3對稱的點(diǎn)的坐標(biāo),從而可求C2的方程.
解答:解:圓C1:x2+y2-2x-4y=0化為標(biāo)準(zhǔn)方程為:(x-1)2+(y-2)2=5
∴圓C1的圓心坐標(biāo)為C1(1,2),半徑為
5

設(shè)C1(1,2)關(guān)于直線l:y=x-3對稱的點(diǎn)的坐標(biāo)為(a,b)
2+b
2
=
1+a
2
-3
b-2
a-1
×1=-1

∴a=5,b=-2
∴C2(5,-2)
∴C2的方程是(x-5)2+(y+2)2=5
即x2+y2-10x+4y+24=0 
故選A.
點(diǎn)評:本題以圓為載體,考查點(diǎn)關(guān)于直線的對稱點(diǎn),解題的關(guān)鍵是利用對稱點(diǎn)的連線被對稱軸垂直平分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓C1:x2+y2=1與圓C2:x2+y2-2x-2y+1=0的公共弦所在直線被圓C3(x-1)2+(y-1)2=
254
所截得的弦長是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩圓C1:x2+y2-2y=0,C2:x2+(y+1)2=4的圓心分別為C1,C2,P為一個(gè)動(dòng)點(diǎn),且直線PC1,PC2的斜率之積為-
12

(1)求動(dòng)點(diǎn)P的軌跡M的方程;
(2)是否存在過點(diǎn)A(2,0)的直線l與軌跡M交于不同的兩點(diǎn)C、D,使得|C1C|=|C1D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C1x2+y2-2x+10y-24=0C2x2+y2+2x+2y-8=0公共弦的長為
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:x2+y2=5和圓C2:x2+y2=1,O是原點(diǎn),點(diǎn)B在圓C1上,OB交圓C2于C.點(diǎn)D在 x軸上,
.
BD
.
OD
=0
,AJ在BD上,
.
BD
.
CA
=0

(1)求點(diǎn)A的軌跡H的方程
(2)過軌跡H的右焦點(diǎn)作直線交H于E、F,是否在y軸上存在點(diǎn)Q使得△QEF是正三角形;若存在,求出點(diǎn)q的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C1x2+y2-2x-3=0與圓C2x2+y2+4x+2y+3=0的位置關(guān)系為(  )
A、兩圓相交B、兩圓相外切C、兩圓相內(nèi)切D、兩圓相離

查看答案和解析>>

同步練習(xí)冊答案