設(shè)橢圓的左右焦點(diǎn)分別為F1、F2A是橢圓C上的一點(diǎn),且,坐標(biāo)原點(diǎn)O到直線AF1的距離為
(1)求橢圓C的方程;
(2)設(shè)Q是橢圓C上的一點(diǎn),過點(diǎn)Q的直線l交x軸于點(diǎn)F(-1,0),交y軸于點(diǎn)M,若|MQ|=2|QF|,求直線l的斜率.
【答案】分析:(1)題設(shè)知F1和F2的坐標(biāo),根據(jù),推斷有,設(shè)點(diǎn)A的坐標(biāo)為根據(jù)原點(diǎn)O到直線AF1的距離求得a,進(jìn)而求得b.答案可得.
(2)設(shè)直線斜率為k,則直線l的方程為y=k(x+1),設(shè)Q(x1,y1),由于Q,F(xiàn),三點(diǎn)共線,且|MQ|=|2QF|.進(jìn)而可得(x1,y1-k)=±2(x1+1,y),求得x1和y1,代入橢圓方程即可求得k,進(jìn)而得到直線斜率.
解答:解:(1)由題設(shè)知F1(-,0),F(xiàn)2,0),其中a>
由于,則有,所以點(diǎn)A的坐標(biāo)為(±
故AF1所在直線方程為y=±(),所以坐標(biāo)原點(diǎn)O到直線AF1的距離為,
又|OF1|=,所以=|=,解得:a=2.
∴所求橢圓的方程為
(2)由題意可知直線l的斜率存在,設(shè)直線斜率為k,則直線l的方程為y=k(x+1),故M(0,k).
設(shè)Q(x1,y1),由于Q,F(xiàn),三點(diǎn)共線,且|MQ|=|2QF|.
根據(jù)題意得(x1,y1-k)=±2(x1+1,y1),解得
又Q在橢圓C上,故
解得k=0,k=±4,綜上,直線的斜率為0或±4
點(diǎn)評:本題主要考查了橢圓的標(biāo)準(zhǔn)方程和直線與橢圓的關(guān)系.常需要直線方程和橢圓方程聯(lián)立,根據(jù)韋達(dá)定理求得問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

設(shè)橢圓的左右焦點(diǎn)分別為,離心率,右準(zhǔn)線為上的兩個動點(diǎn),

(Ⅰ)若,求的值;

(Ⅱ)證明:當(dāng)取最小值時,共線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率,過分別作直線,且,分別交直線兩點(diǎn)。

(Ⅰ)若,求 橢圓的方程;

(Ⅱ)當(dāng)取最小值時,試探究

的關(guān)系,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率,點(diǎn)到右準(zhǔn)線為的距離為(Ⅰ)求的值;(Ⅱ)設(shè)上的兩個動點(diǎn),,證明:當(dāng)取最小值時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省高二上學(xué)期期末終結(jié)性數(shù)學(xué)文卷 題型:解答題

設(shè)橢圓的左右焦點(diǎn)分別為、是橢圓上的一點(diǎn),且,坐標(biāo)原點(diǎn)到直線的距離為

(1)求橢圓的方程;

(2) 設(shè)是橢圓上的一點(diǎn),過點(diǎn)的直線軸于點(diǎn),交軸于點(diǎn),若,求直線的斜率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省2012屆高二下學(xué)期期末考試數(shù)學(xué)(文) 題型:解答題

(本小題滿分14分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率,點(diǎn)在直線:的左側(cè),且F2l的距離為。

(1)求的值;

(2)設(shè)上的兩個動點(diǎn),,證明:當(dāng)取最小值時,

 

查看答案和解析>>

同步練習(xí)冊答案